
A New Approach to Modular Database Systems

Florian Irmert
Friedrich-Alexander University

of Erlangen-Nuremberg
Department of Computer

Science
Computer Science 6
(Data Management)

Martensstrasse 3
91058 Erlangen, Germany

florian.irmert@cs.fau.de

Michael Daum
Friedrich-Alexander University

of Erlangen-Nuremberg
Department of Computer

Science
Computer Science 6
(Data Management)

Martensstrasse 3
91058 Erlangen, Germany

michael.daum@cs.fau.de

Klaus Meyer-Wegener
Friedrich-Alexander University

of Erlangen-Nuremberg
Department of Computer

Science
Computer Science 6
(Data Management)

Martensstrasse 3
91058 Erlangen, Germany

kmw@cs.fau.de

ABSTRACT
In this paper we present our approach towards a modularized
database management system (DBMS) whose components
can be adapted at runtime and show the modularization
of a DBMS beneath the record-oriented interface as a first
step. Cross-cutting concerns like transactions pose thereby a
challenge that we answer with aspect-oriented programming
(AOP). Finally we show the implementation techniques that
enable the exchange of database modules dynamically. Par-
ticularly with regard to stateful components we define a ser-
vice adaptation process that preserves and transmits the
component’s state.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Mainte-
nance, and Enhancement; D.2.11 [Software Engineering]:
Software Architectures; D.2.13 [Software Engineering]:
Reusable Software; H.2.4 [Database Management]: Sys-
tems

General Terms
Design, Management

Keywords
Adaptation, availability, service-oriented architecture, com-
ponent replacement, modularity, migration

1. INTRODUCTION
For about 30 years no major company is able to manage
the large volume of information without a database man-
agement system (DBMS). Well known ”generic” database
systems like Oracle or DB2 extend their functionality with
every release. Such commercial database systems are often
developed over many years, and to stand out on the highly

competitive market, a lot of developers are needed to man-
age the extensive development. Although the ”componenti-
zation” [18] of database management systems (DBMS) is a
topic of research since the 90s, today’s DBMSs still consist
of a monolithic database kernel. Such a monolithic architec-
ture increases maintenance and development costs addition-
ally. In this paper we present our ideas towards a modular
generic database. We describe the necessary properties and
present work in progress. Current software engineering prac-
tices like service orientation and loose coupling are used to
structure the design of the DBMS and therewith simplify
the development and maintenance. As a result DBMSs for
specific purpose can be developed much faster and cheaper
compared to a traditional development process.

We aim to design a modular DBMS that can be adapted to
different environments by assembling prefabricated modules.
Therefore we need a kind of DBMS ”construction kid”. For
each ”building block” dependencies to other blocks have to
be defined, and basic modules have to be identified that are
necessary in every DBMS. Then a DBMS can be assembled
by choosing the right modules for the specific task of the
system.

To provide high availability, another challenge is the mod-
ification of modular DBMSs at runtime. We want to add,
exchange, and remove modules while the database system
is running. A possible scenario is the installation of a small
DBMS with only a few features and its extension at runtime
if new features are required. E.g. at the time of installation
of an application a B-tree index is sufficient and therefore
only the B-tree module is installed to save disk space. After
a while a bitmap index would be very helpful. In a run-
time adaptable DBMS the module for the bitmap index can
be installed without stopping the DBMS. Towards this re-
quirement a framework is needed to manage the individual
modules.

2. RELATED WORK
The drawbacks of a monolithic DBMS are presented in [7]:

• DBMS become too complex. It is not possible to main-
tain them with reasonable costs.

• Applications have to pay performance and cost penalty

buettner
Schreibmaschinentext

buettner
Schreibmaschinentext

buettner
Schreibmaschinentext

buettner
Schreibmaschinentext

buettner
Schreibmaschinentext

buettner
Schreibmaschinentext

buettner
Schreibmaschinentext

buettner
Schreibmaschinentext

buettner
Schreibmaschinentext

buettner
Schreibmaschinentext

buettner
Schreibmaschinentext

buettner
Schreibmaschinentext

buettner
Schreibmaschinentext

buettner
Schreibmaschinentext

buettner
Schreibmaschinentext

buettner
Schreibmaschinentext

buettner
Schreibmaschinentext

buettner
Schreibmaschinentext

buettner
Schreibmaschinentext

buettner
Schreibmaschinentext

buettner
Schreibmaschinentext

buettner
Schreibmaschinentext

buettner
Schreibmaschinentext

buettner
Schreibmaschinentext
© ACM, 2008. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was publishedin SETMDM '08 Proceedings of the 2008 EDBT workshop on Software engineering for tailor-made data management http://doi.acm.org/10.1145/1385486.1385498

buettner
Schreibmaschinentext

buettner
Schreibmaschinentext

buettner
Schreibmaschinentext



for using unneeded functionality.

• System evolution is more complex, because a DBMS
vendor might not have the resources or expertise to
perform such extensions in a reasonable period of time.

To solve such problems Dittrich and Geppert [7] propose
componentization of DBMSs and identify four different cat-
egories of CDBMSs (component DBMS):

• Plug-in Components. The DBMS implements all stan-
dard functionality, and non-standard features can be
plugged into the system. Examples for this category
are Oracle Database [2], Informix [13] and IBM’s DB2
[6].

• Database Middleware. DBMSs falling in this category
integrate existing data stores, leaving data items under
the control of their original management system, e.g.
Garlic [16], Harmony [15] and OLE DB [4].

• DBMS Services. DBMSs of this type provide function-
ality in standardized form unbundled into services, e.g.
CORBAservices [3].

• Configurable DBMS. DBMSs falling in this category
are similar to DBMS services, but it is possible to
adapt service implementations to new requirements or
to define new services. An example is the KIDS project
[8].

A good overview of these categories can be found in [20].

In recent time service-oriented architecture (SOA) has be-
come a popular buzzword. The principles of SOA are also
suitable for building modular DBMSs. [19] present an ap-
proach towards service-based DBMS. They borrowed the ar-
chitectural levels from Härder [9] and want to include the
advantages introduced by SOA like loosely coupled services.
They have defined four different layers, which are imple-
mented as services. It is argued that DBMS build upon this
architecture is easily extendable because service can be in-
voked when they are needed and in case of failure of services,
alternative services can answer the request. Tok and Bres-
san [21] also introduce a DBMS architecture based on service
orientation, called SODA (Service-Oriented Database Archi-
tecture). In their DBNet prototype web services are used as
the basic building blocks for a query engine.

These approaches do not address the handling of cross cut-
ting concerns (section 3.2) in a modular DBMS and in con-
trast to our approach do not provide runtime adaptation.

3. OUR APPROACH
The major goals of our CoBRA-DB project (Component
Based Runtime Adaptable DataBase) are:

• Modularization of a relational database management
system

• Exchanging modules at runtime

In this section we present work in progress. At first we intro-
duce an educational DBMS called i6db, which is developed
at our department. The i6db lays the foundations for our
recent work towards a modular database system. Then we
present our activities regarding the handling of cross cutting
concerns inside a DBMS and finally we show our approach
concerning runtime adaptation.

3.1 Modularization of database systems
Modularization and the definition of abstract interfaces are
the first steps in order to get modules that can be exchanged
at runtime. The challenge is to identify the appropriate
modules. Härder [9] proposed a multi layer architecture of
DBMSs that is very useful to understand the functionality of
DBMS and to structure the important parts. The proposed
layers are not fine grained enough to map them exactly to
DBMS components; this would limit the dynamic adapta-
tion (section 3.3), because the exchange of a whole layer’s re-
alization would lead to overhead if only small changes would
be required.

In this section we present the architecture of i6db, a DBMS,
which was designed and implemented at the department of
computer science 6 (database systems) at the university of
Erlangen-Nuremberg over the last years. The i6db is writ-
ten in C++ and concentrates on layer abstraction, design
patterns, and loose coupling.

i6db - a database for educational purposes
The i6db was originally designed for educational purposes,
e.g. we set transactions and multi-user handling aside. Re-
garding to Härder’s five level architecture (figure 1) [9] we
have implemented the layer L1 to L4. The query engine can
execute queries based on relational operators. Higher order
query languages like SQL are taught on the basis of existing
databases for educational purposes.

File management

Nonprocedural or
algebraic access

Record-oriented,
navigational access

Record and access
path management

Propagation control

Level of abstraction Objects

Tables, views, tuples

Records, sets, 
hierarchies, networks

Physical records, 
access paths

Segments, pages

Files, blocks

Tr
an

sa
ct

io
n 

M
an

ag
em

en
t

L1

L2

L3

L4

L5

Figure 1: Five layer architecture

The core of i6db consists of seven modules. The module
file is the L1 abstraction (file management) [9], segment
and systembuffer are the L2 abstraction (propagation con-
trol). We assumed page/block-oriented data organization.
All modules of L3 use accordingly the system buffer mod-
ule. At the moment we have four different alternatives for
the implementation of the record manager. There are two
different algorithms (Tuple IDentifier, DataBase key Trans-
lation Table) both with the extension of support of records
that are larger than database pages. The exchange of those
record manager’s realizations is quite simple.



Table

table

TableManager

TableManager_Indexed

File

BlockFile

BitmapBlockFile

file

FPA

FPAImpl

fpa

SystemBuffer

SystemBufferImpl

systembuffer

RecordManager

FragmentTIDManager

records

TIDManager

FragmentDBTTManager

DBTTManager

IndirectSegment

Segment
segment

query engine

Index

BTreeIndex

index

Block oriented 
processing

L2

L3

L1

L4

Figure 2: Modules of i6db

In figure 2 the large box enframes all realizations whose al-
gorithms are based upon the use of pages. If i6db should be
used as a main memory database, the block organization is
obsolete. Then, all block based algorithms and structures
must be abolished. As indexes and record manager don’t
need block orientation necessarily, the interfaces (Index,
RecordManager) of the L3 (record and access path man-
agement) modules could be used further, but the modules
must be exchanged. The block -tree index, the free place ad-
ministration and all modules that organize records in blocks
must be replaced by structures that are organized in main
memory.

The L4 module (record-oriented, navigational access) table
has two alternatives. The one holds a use-dependency to the
index-module, the other doesn’t. The table-module can be
accessed by the methods that table provides. It depends
solely on the table’s implementation if indexes can be used.
If an index-access method is called and there is no index
available a full table scan has to be performed.

Our query engine can be used for the definition of tables
and indexes. Records can be stored, removed and altered,
too. Queries are defined by a query graph that consists of
implemented relational operators. Due to the formal defini-
tion of relational operators each operator gets a set of input
operators and predicates. Each operator can iterate the re-
sult. There are two table iterators implemented that access
the tables of the table-module either by full-table-scan or
by index-table-scan.

The i6db project lays a solid basis for creating a modular
and adaptable database at least. In future we will integrate
transaction mechanisms. As discussed below transactions
are cross-cutting concerns. With the integration by using
aspect-oriented programming techniques we can provide an
interface that support transaction handling. Then we can

abolish the selfmade query engine and use MySQL 5.1 and
integrate our i6db with its sound architecture as storage
engine of MySQL [1].

3.2 Uncoupling Transactions
Existing approaches propose the incorporation of SOA to
develop a modular DBMS [19, 21]. Modules like the query
engine or layers [9] are realized as services. But cross cutting
concerns like logging or transaction management (figure 1)
make modularization in a full-fledged DBMS difficult, be-
cause e.g. to realize transactions, nearly every module is
involved in the transaction management [14]. A ”transac-
tion object” is created at the beginning of a transaction and
can not be destroyed until the transaction commits. Such
an object could not be realized as a stateless service and
all procedure calls which belong to the statements that are
executed within a transaction must be associated with this
object.

We are currently working on an extraction of the transac-
tional aspect. The DBMS modules should not be aware of
the fact that they are part of a transaction. For a prototype
we have removed the implementation of transaction manage-
ment in SimpleDB [17] and we are currently ”re-integrating”
the transaction support with the help of aspect-oriented pro-
gramming (AOP) [12]. With AOP it is possible to intercept
the methods of the modules and gain all necessary informa-
tion to support transactions without the drawback of direct
coupling. While we are presenting work in progress, there
are still problems to be solved in our prototype, like the
tracing of method invocations during the execution of a SQL
statement.

3.3 Adaptation at runtime
Beside modularization the second major goal of the CoBRA-
DB project is runtime adaptation. There are different sce-



narios where runtime adaptation is useful:

• Change a module that contains a bug

• Upgrade the DBMS with new functionality

• Remove unused features to increase performance and
save space

• Change of a set of modules by cross cutting concerns
or multiple changes of different modules as a result in
order to change bigger parts or strategies of a DBMS

An example for a far-reaching upgrade would be adding
transactions management to a running DBMS, which has
not the need for transactions at time of its installation.

We pick up the idea of Cervantes and Hall, who have in-
troduced a service-oriented component model: ”A service-
oriented component model introduces concepts from ser-
vice orientation into a component model. The motivation
for such a combination emerges from the need to introduce
explicit support for dynamic availability into a component
model” [5]. This concept can be used as basis for our work
towards runtime adaptation. DBMS ”modules” are real-
ized as components that provide their functionality as ser-
vices. Some of these modules are mandatory and provide
the DBMS’s core functionality like inserting and querying
data. Other services are optional and can be added or re-
moved depending on the application and the environment,
e.g., if transaction support is not required, the ”transaction
module” is removed.

We do not propose the distribution of services. Remote pro-
cedure calls are much to slow to be used inside a DBMS. The
required components should be able to invoke one another
locally. To accomplish loosely binding a service searches in a
global registry to locate services which are required to fulfill
its role and than these service can be bounded and invoked.

One characteristic of service orientation is the fact that ser-
vice can arrive and disappear at any point in time. Business
applications which rely on specific service are not available
if a mandatory service disappears and can not be replaced
with another adequate service. This behavior is not accept-
able if we are building a DBMS, because if one service of
the DBMS disappears, all depending applications would not
be able to work correctly. With this requirement in mind it
is absolutely necessary for a DBMS which relies on service-
oriented components that these components are available
and their provided services are accessible. To swap services
at runtime, the adaptation has to be done transparently for
all consumers of that service. Obviously some time is needed
to replace a running component with a new implementation.
Therefore the method calls have to be interrupted and redi-
rected to the new component. This ”switch over act” has to
be done in an atomic operation for all services which rely on
the adapting service.

To handle the whole adaptation process we introduce an
Adaptation Manager which coordinates the individual steps.
The process is divided in 3 phases (figure 3). During the

B1a

Store phase Switch phase

State container

B1

Restore phase

Adaptation process

Active reference

Invalid reference

B2

Adaptation manager

Service proxy

store

restore

Blocked invocation

Successful invocation

time

Figure 3: Service adaptation process

store phase the references of all depending service are inval-
idated and the state of the ”old” component is saved in a
special data structure. In the switch phase the state is in-
jected in the new component. Last the references are set to
the new component in the restore phase, and the references
are set to the new component. We describe the adaptation
process in [10] in detail.

To enable the adaptation of aspects at runtime we integrate
a dynamic AOP (d-AOP) framework in our prototype be-
cause d-AOP supports the modification of aspects at run-
time. Therefore we can use the techniques we have presented
in [11] to integrate dynamic AOP into a service-oriented
component model.

4. FUTURE WORK AND CONCLUSION
In the paper we introduced the CoBRA-DB project. The
goal of this project is a modularized runtime adaptable
DBMS. We argued the problems of ”slicing” a database
into loosely coupled components and the challenge regard-
ing cross cutting concerns. We are currently implementing
a prototype framework to adapt components at runtime.
Thereby the state of a component is transferred to the re-
placing component in an atomic step. With the lessons
learned in the i6db project, where we have implemented a
DBMS in C++, we are now going to develop a prototype
in Java. In parallel we remove the transaction management
from a sample DBMS (we use SimpleDB) and reintegrate it
with the help of AOP to provide a foundation for further
modularization. This is a major difference in contrast to
other projects which use SOA to modularize DBMSs. An-
other distinction is the ability to swap modules at runtime
and thereby adapt a DBMS to a changing environment with-
out the need to shutdown the database.

5. REFERENCES
[1] D. Axmark, M. Widenius, P. DuBois, S. Hinz,

M. Hillyer, and J. Stephens. MySQL 5.1
Referenzhandbuch. MySQL, 2007.

[2] S. Banerjee, V. Krishnamurthy, and R. Murthy. All
your data: the oracle extensibility architecture.
Component database systems, pages 71–104, 2001.

[3] R. Bastide and O. Sy. Formal specification of CORBA



services: experience and lessons learned. Proceedings
of the 15th ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and
applications, pages 105–117, 2000.

[4] J. A. Blakeley. Data access for the masses through ole
db. SIGMOD Rec., 25(2):161–172, 1996.

[5] H. Cervantes and R. S. Hall. Autonomous adaptation
to dynamic availability using a service-oriented
component model. In ICSE ’04: Proceedings of the
26th International Conference on Software
Engineering, pages 614–623, Washington, DC, USA,
2004. IEEE Computer Society.

[6] J. Cheng, J.; Xu. Xml and db2. Data Engineering,
2000. Proceedings. 16th International Conference on,
pages 569–573, 2000.

[7] K. R. Dittrich and A. Geppert, editors. Component
database systems. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 2001.

[8] A. Geppert, S. Scherrer, and K. R. Dittrich. KIDS:
Construction of Database Management Systems based
on Reuse. Technical Report ifi-97.01, University of
Zurich, 1997.

[9] T. Härder. DBMS Architecture - the Layer Model and
its Evolution (Part I). Datenbank-Spektrum,
5(13):45–56, 2005.

[10] F. Irmert, T. Fischer, and K. Meyer-Wegener.
Improving availability in a service-oriented component
model using runtime adaptation. University of
Erlangen and Nuremberg, to be published, 2007.

[11] F. Irmert, M. Meyerhöfer, and M. Weiten. Towards
Runtime Adaptation in a SOA Environment.
RAM-SE’07 - 4th ECOOP Workshop on Reflection,
AOP and Meta-Data for Software Evolution,
co-located at the 21th European Conference on
Object-Oriented Programming - ECOOP (Berlin,
Germany), July 2007.

[12] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-oriented programming. In M. Akşit and
S. Matsuoka, editors, Proceedings European
Conference on Object-Oriented Programming, volume
1241, pages 220–242. Springer-Verlag, Berlin,
Heidelberg, and New York, 1997.

[13] M. Olson. DataBlade extensions for
INFORMIX-Universal Server. Proceedings IEEE
COMPCON, 97:143–8, 1997.

[14] A. Rashid. Aspect-Oriented Database Systems.
Springer, 2004.

[15] U. Röhm and K. Böhm. Working Together in
Harmony - An Implementation of the CORBA Object
Query Service and Its Evaluation. In ICDE’99:
Proceedings of the 15th International Conference on
Data Engineering, 23-26 March 1999, Sydney,
Austrialia, pages 238–247, 1999.

[16] M. T. Roth and P. M. Schwarz. Don’t scrap it, wrap
it! a wrapper architecture for legacy data sources. In
M. Jarke, M. J. Carey, K. R. Dittrich, F. H.
Lochovsky, P. Loucopoulos, and M. A. Jeusfeld,
editors, VLDB’97, Proceedings of 23rd International
Conference on Very Large Data Bases, August 25-29,
1997, Athens, Greece, pages 266–275. Morgan
Kaufmann, 1997.

[17] E. Sciore. SimpleDB: a simple java-based multiuser
system for teaching database internals. ACM SIGCSE
Bulletin, 39(1):561–565, 2007.

[18] A. Silberschatz and S. Zdonik. Strategic directions in
database systems - breaking out of the box. ACM
Comput. Surv., 28(4):764–778, 1996.

[19] I. E. Subasu, P. Ziegler, and K. R. Dittrich. Towards
service-based database management systems. In
Datenbanksysteme in Business, Technologie und Web
(BTW 2007), Workshop Proceedings, 5.-6. März 2007,
Aachen, Germany, pages 296–306, 2007.

[20] A. Tesanovic, D. Nystrom, J. Hansson, and
C. Norstrom. Embedded databases for embedded
real-time systems: A component-based approach.
Technical report, Dept. of Computer Science,
Linkoping University, and Dept. of Computer
Engineering, Malardalen University, 2002.

[21] W. H. Tok and S. Bressan. DBNet: A Service-Oriented
Database Architecture. In DEXA ’06: Proceedings of
the 17th International Conference on Database and
Expert Systems Applications, pages 727–731,
Washington, DC, USA, 2006. IEEE Computer Society.




