
Semantics of a Runtime Adaptable Transaction Manager

Florian Irmert, Frank Lauterwald, Christoph P. Neumann, Michael Daum,
Richard Lenz, Klaus Meyer-Wegener

Department of Computer Science, Chair for Computer Science 6 (Data Management)
University of Erlangen-Nuremberg, Germany

{florian.irmert, frank.lauterwald, christoph.neumann, michael.daum,
richard.lenz, kmw}@cs.fau.de

ABSTRACT
Database Management Systems (DBMSs) that can be
tailored to specific requirements offer the potential to
improve reliability and maintainability and simultaneously
the ability to reduce the footprint of the code base. If the
requirements of an application change during runtime the
DBMS should be adapted without a shutdown. Runtime-
adaptation is a new and promising research direction to
dynamically change the behavior of a DBMS. Especially
the adaptation of the Transaction Manager (TM) states a
challenge.

In this paper, we present the session semantics of a runtime-
adaptable TM. We define preliminaries and assumptions
to activate the TM during sessions from a conceptual point
of view. The advantages and disadvanteges of different ap-
proaches are discussed, especially regarding the occurence of
ANSI SQL phenomena. From a technical point of view, we
define requirements for the architecture of the TM and the
DBMS that arose in our prototype.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Relational
databases, Transaction processing

General Terms
Theory, Design

Keywords
Runtime, Adaptation, Transaction Management, SQL Phe-
nomena

c©ACM, 2009. This is the author’s version of the work. It is
posted here by permission of ACM for your personal use. Not for
redistribution. The definitive version was published in Proceedings of
the 2009 International Database Engineering and Applications Symposium,
2009, http://doi.acm.org/10.1145/1620432.1620442

1. INTRODUCTION
Many database vendors drive innovations by adding
new functionality to their existing products with every
new release. This trend results in an increasing
product size of the Database Management Systems
(DBMSs). In order to apply a DBMS in embedded
or pervasive systems, customized DBMSs have to be
implemented. Such customized DBMSs cause rising
development and maintenance costs. In order to
provide a sustainable solution, the advantages of a
small customized (individually implemented) realization
and the comprehensive functionality of traditional DBMSs
have to be combined. Due to specific application
semantics and reduced synchronization in embedded
systems, particular parts like the transaction management
are often not necessary. A lightweight DBMS without
transaction management that increases throughput and
reduces response time is therefore often more suitable for
embedded systems. During the lifetime of a system the
complexity (required functionality) tends to increase over
the years and a transaction management may be necessary
in the future. Thus, we propose the seamless addition of the
transaction management into a running DBMS. The need
for deactivating the Transaction Manager (TM) at runtime
seems to be much smaller.

Gray postulates “if every file system, every disk and every
piece of smart dust has a database inside, database systems
will have to be self-managing, self-organizing, and self-
healing” [9]. To provide a basis for this vision, a DBMS
has to be adaptable at runtime. Nowadays changing the
functional range of a DBMS requires a shutdown and
redeployment of a new version. Taking a DBMS offline is
often not feasible in some environments. In the majority
of cases, more than one application relies on a single DBMS
and for most of them it is crucial that the DBMS is working;
i.e. it is particularly important for DBMSs to be “always
up”. An in-depth evaluation of the consequences of run-
time adaptation is required to provide seamless operation in
a dynamic environment.

The CoBRA DB (Component Based Runtime Adaptable
DataBase) project [11] investigates modular DBMSs that
can be adapted to different environments by assembling
prefabricated CoBRA DB components. The adaptation of
the transaction management poses a prominent challenge in
this context. The architectural encapsulation is presented in
[12] and the focus of this paper is to resume the discussion

with regard to semantic issues. We propose different
possibilities to activate the transaction management at
runtime and discuss their pros and cons regarding anomalies
and isolation levels.

2. INITIAL SCENARIO
Before we start discussing the semantics of activating the
TM at runtime we introduce the behavior of a DBMS that
is running without a TM.

2.1 Failure Semantics without TM
A DBMS without transaction management cannot guaran-
tee the ACID properties atomicity, consistency, isolation,
and durability. Because most database environments are
used to transactional support, some consequences of miss-
ing transaction support are outlined:

• Atomicity: The occurrence of DBMS failures
or system failures may lead to partially written
data, rendering even a single statement non-atomic.
Additionally, application failures may occur between
several statements that are logically grouped (would-
be transactions). This makes it impossible to
guarantee atomicity for a whole transaction even in
the absence of system failures. Furthermore, without
TM an application cannot request roll-backs.

• Consistency: Again, DBMS failures or system failures
may lead to data loss, leaving the database in a
physically inconsistent state. Logical consistency, like
constraints, may be enforced but they cannot be
deferred until the end of a transaction. Application-
specific consistency rules are difficult to implement
because of the missing atomicity: In a DBMS with
a TM, an application may check its rules and decide
to just roll back if it is not satisfied with the state of
the database. This is not possible without a TM and
an application would have to provide compensations
by itself.

• Isolation: Multiple applications are not isolated by the
DBMS. Yet, applications in a system environment
may concurrently access the same data items by
synchronizing themselves on application layer.

• Durability: The point in time at which data is written
to persistent storage depends on the buffer strategy of
the DBMS. Without a TM the application has no way
to influence or request the flushing of memory buffers
which is conceptionally a part of a commit. The DBMS
has no way to inform the application that its data is
durable as it is done by a TM by acknowledging a
commit request.

Depending on the scenario and the specific requirements
of the applications, such constraints may be acceptable.
For example, if only one application is using the DBMS,
concurrency issues are not relevant.

Even if a DBMS without a TM does not provide any
warranties in general or has to individually define its
warranties, it is necessary, for the lucidity of this discussion,

to make minor assumptions about such a basic DBMS: At
least, access to individual records has to be protected in
a way that 1) no reader can see partially-written records
and 2) no two writers can update a record at the same
time. These assumptions are, for example, appropriate
for a DBMS with a buffer system that implements latches.
Such a DBMS provides a minimum protection for multiple
applications even without a TM.

2.2 Active Sessions
Investigation of the transactional semantics of run-time
adaptation of a TM is only necessary with active sessions
that are already running before the TM is activated. There
are three types of conflicts that can arise from multiple
sessions: read-write, write-read, and write-write. Read-
write and write-read conflicts may occur in the case of at
least one active reader and one writer; write-write conflicts
may only occur in the case of multiple writers. As all of
these conflicts involve at least one writer, we can distinguish
several cases based on the number of writers connected to
the database. Trivial cases, like only one active session, are
intentionally left out.

1. No writer and n > 0 readers

2. One writer and n ≥ 0 readers

3. More than one writer and n ≥ 0 readers

We do not restrict the pre-TM application environment in
any way. Therefore, it is necessary to comprehend which
problems may arise in each possible case, because a different
set of phenomena can occur: In the first case, none of
the ANSI SQL-phenomena are possible. In the second
case, dirty reads, non-repeatable reads, and phantoms are
possible. In the third case, additional phenomena like
dirty writes and lost updates may occur. Dirty reads,
non-repeatable reads, and phantoms are subject of the
considerations in the SQL-standard [14]; dirty writes and
lost updates are not considered.

If the application environment has turned out to be not
properly synchronized, a basic reason to deploy a TM is
present because providing the synchronization by the DBMS
avoids the need to change the applications. If an additional
application connects to the database, a TM may also be
required for two reasons: First, the new application might
change the scenario, e.g. from zero writers to one or from one
to several, leading to new possible phenomena which might
not be acceptable. Second, the new application may require
a form of synchronization that would be too expensive to
provide on application layer. In these cases, a TM has to be
installed.

2.3 Programming Model
The behavior of common database applications is similar
to the behavior of applications that are employed in a
runtime-adaptable environment. A logical sequence of
operations starts at least whenever a user starts a session.
During a session, new logical sequences of operations start
whenever he uses the transactional keywords COMMIT or
ROLLBACK . According to the SQL-standard, the DBMS

assumes begin transaction implicitly when a connection
is established and after every commit and abort. Using
transactional keywords without having a TM only leads to a
markup of logical sequences. Without TM, COMMIT does
not guarantee the ACID properties. As no ROLLBACK
is possible without a TM initial applications may not use
ROLLBACK at all.

When a TM is activated at runtime, the working
environment for the applications changes drastically. A
primary goal in distinguishing and analyzing several
TM activation strategies is to find one that keeps
the implications for application developers as small as
possible. A premise in the discussion is that it is not
possible to alter the client applications when the TM
is activated or deactivated at runtime. Neither are
client applications informed about the TM activation or
deactivation. Consequently, applications send the same
SQL commands to the server regardless of the availability
of transactional support. Applications that do not need
transactions should be able to run without as well as with a
TM. Applications are not forced to use COMMIT . However,
using COMMIT is advisable because a TM may otherwise
group a complete application session to a single transaction
which can lead to semantic problems, lock contention, or
both. Applications that genuinely require transactional
support may use COMMIT as well as ROLLBACK but
they must never be executed in an environment without an
active TM.

In conclusion, for an application that works without as well
as with a TM, we require at least the following:

1. The application does not try to perform an abort, as
an abort is not possible without a TM.

2. The application does perform commits in certain
intervals. In the presence of a TM, this is required
to prevent accumulation of locks. In this regard, our
system does not differ from any other DBMSs with a
TM.

2.4 Scenario
During this paper we assume the following scenario: One or
more applications depending on a DBMS are deployed on an
embedded device. At the time of deployment, a transaction
manager is not necessary due to the requirements of the
applications and would cause unnecessary load. During
the lifetime of the system, other applications are deployed
or the existing applications are extended in a way that
transaction management is indispensable. This may be due
to requirements for any of the ACID properties.

In this paper, we focus on the isolation property as it is
the most challenging. The required degree of isolation may
vary. This leads to the existence of several different isolation
levels in SQL [14]. For lucidity, we assume that the TM
has to provide the SERIALIZABLE isolation mode to
all transactions while it is running; individual transactions
with lower isolation requirements are subsumed by such
discussion. Subject to the discussion are problems during
the activation and deactivation that prevent the guarantee
of strict isolation. Several activation strategies can be

distinguished, each with different drawbacks regarding the
transactional session semantics during the activation of the
TM at runtime.

3. DYNAMIC TM ACTIVATION
In this section we discuss the different possibilities to
activate a TM at runtime. We focus on the isolation
property as it is the most challenging. Atomicity,
consistency and durability each refer to a single transaction,
while isolation describes the allowed and disallowed
interactions between multiple sessions.

Activating the TM between SQL statements provides an
intuitive TM activation model. Therefore the activation of
the TM never interrupts running statements. In the context
of TM activation, we distinguish between sessions that
originate before TM activation (pre-sessions) and sessions
that are initiated after TM activation (post-sessions). In
our discussion about transactional semantics for TM run-
time activation, we have to consider pre-sessions and post-
sessions separately:

• It is possible to either create transactional contexts
for pre-sessions with immediate effect (immediate pre-
session transactions) or the first transactional context
within pre-sessions is created after their next occurring
commit (deferred pre-session transactions).

• All post-sessions are isolated by transactions, but we
distinguish immediate execution of initial transactions
(immediate post-session transactions) from deferred
execution (deferred post-session transactions): post-
sessions are deferred until all pre-sessions have
committed after the TM activation.

3.1 Activation Strategies
In figure 1 we present our three different possibilities (”DD”,
”DI” and ”II”) to activate the TM at runtime. In each case
the first timeline represents a pre-session and the second
timeline a post-session. Individual SQL statements are
denoted by Uij where i identifies the session and j numbers
the statements. Likewise, Cij denotes a COMMIT . All
three possibilities have in common that a pre-session is only
considered and treated in special ways until its first commit
after TM activation. After a pre-session has committed once
during TM presence, the session’s subsequent transactions
are not treated differently from the ones of any post-sessions
(demonstrated in U15 to U17 that follow the pre-session
commit C11).

• DD - deferred pre- and deferred post-session
transactions

The first scenario in figure 1 outlines the activation
strategy deferred pre-session transactions and deferred
post-session transactions (abbr.: DD). In this case,
transactions of post-sessions are blocked until all pre-
session have committed or terminated. In the example,
the commit C11 represents the commit of all pre-
sessions. The activation of the TM is deferred until
this point in time. After C11 the TM is active for all
sessions.

U14 U15 U16 U17U13U12U11pre

U21 U22 U23

C11DD

transaction
pre

C12

U U U U U U U

deferralpost C21

U11 U12 U13 U14 U15 U16 U17

U21 U22 U23
DI

pre

C11 C12
U21 U22 U23

post C21

U11 U12 U16 U17U13 U14 U15

II

pre

C11 C12

TM i i

U21 U22
II U23

post C21
TM activation

Figure 1: TM activation semantics

• DI - deferred pre- and immediate post-session
transactions

The second scenario is an example for the activation
strategy deferred pre-session transactions and immedi-
ate post-session transactions (abbr.: DI). Here a post-
session can start a transaction directly after the TM
activation without any deferral. Statements in a pre-
session just acquire short locks. Thus, each statement
in a pre-session is viewed as a transaction in its own
right until the first commit occurs.

• II - immediate pre- and immediate post-session
transactions

The last scenario in figure 1 shows an example
for immediate pre-session transactions and immediate
post-session transactions (abbr.: II). After the
activation of the TM a new statement starts a
transaction in post-sessions as well as in pre-sessions.

3.2 Activation Strategy Evaluation
In this section we discuss the advantages and disadvantages
of the activation strategies and their different behavior with
regard to the three standard ANSI SQL phenomena
Dirty Read, Non-repeatable Read and Phantom. Figure 2
shows the operation sequences (abbr.: OpSeq) for each
phenomenon as they are described in [14].

We will discuss these scenarios for our three activation
strategies. We focus on conflicts between a pre-session
and a post-session: conflicts between two pre-sessions are
not affected by TM activation, while two post-sessions are
always isolated from each other. By convention the first
operation in a schedule is always performed by OpSeq1
(figure 2). Therefore we have to distinguish if OpSeq1 is
executed in a pre- or post-session:

1. OpSeq1 starts in a pre-session and OpSeq2 in a post-
session. In this case we have to distinguish two
different TM installation times (abbr.: TMI) (see
figure 2):

(a) TMI1: The TM is installed before the first
operation of the schedule (scenario (1a)).

(b) TMI2: The TM is installed while the pre-session
is already running but before the first operation
of the post-session (scenario (1b)).

2. OpSeq1 starts in a post-session while OpSeq2 still
runs in a pre-session (scenario (2)). Obviously in
this case installation is only possible at TMI1: As the
first operation in the schedule is performed by post-
session OpSeq1 and post-sessions always run under TM
control, the TM installation has to be done before the
beginning of the schedule.

DD - deferred pre- and deferred post-session
transactions
The DD strategy does not allow pre-sessions and post-
sessions to exist at the same point in time. The first
statement in a post-session is deferred until all pre-sessions
have committed (after a commit, they are no longer pre-
sessions)1. Therefore none of the phenomena can occur with
this strategy.

The drawback of this solution is caused by long running
pre-sessions that do not commit. The activation of the

1Incidentally, Microsoft SQL Server does something similar
when switching to snapshot isolation at runtime. See
e.g. www.sqlteam.com/article/transaction-isolation-and-
the-new-snapshot-isolation-level

Installation Time Phenomena DI II
TMI1 Dirty Read No No

Non-Repeatable Read Yes No
Phantom Yes No

TMI2 Dirty Read No No
Non-Repeatable Read Yes Yes
Phantom Yes Yes

Table 1: Phenomena in (1a) and (1b)

Dirty Read:

W(x)

R(x)

A

OpSeq1
OpSeq2

Non‐repeatable Read:

R(x)

R(x)R(x)
OpSeq1Non repeatable Read:

W(x) C

R(P) R(P)

OpSeq2

Phantom:

W(x in P)

R(P) R(P)
OpSeq1
OpSeq2

TMI1 TMI2

Figure 2: Phenomena

TM is deferred by such sessions for unpredictable time.
Particularly in embedded systems, sessions may run without
termination and therefore the TM will not be activated.
However, this problem is not specific to a dynamically
activated TM: If the TM were activated from the beginning,
long-running transactions would keep locks for a long time,
thus possibly preventing other transactions from running.
The solution is requiring pre-sessions to commit from time
to time as described in section 2.3.

DI - deferred pre- and immediate post-session
transactions
In order to discuss the behavior of the DI strategy, we have
to examine the three scenarios (1a), (1b) and (2) separately:
In (1a) OpSeq2 can read an item x that has been modified by
OpSeq1 before, because OpSeq1 only requests a short lock
on x. Nevertheless, a Dirty Read is not possible because
pre-sessions are not allowed to abort (see section 2.3) and
therefore x will not be rolled back by a pre-session after
it is read by OpSeq2. Non-repeatable Read and Phantom
are possible because the read operation in OpSeq1 does
only request a short lock on x, respectively on P. The
scenario (1b) is in this strategy equivalent to (1a). A
Dirty Read is not possible for the same reason and Non-
repeatable Read and Phantom are possible because the read
operation in OpSeq1 does not request a lock. In (2) none
of the phenomena are possible. OpSeq1 request a lock on x,
respectively P, and when OpSeq2 requests short locks it has
to wait until OpSeq1 releases the lock.

In this strategy, transactions and SQL commands that are
not protected by a transaction are executed concurrently.
This necessitates a discussion about possible deadlocks.
While a deadlock situation may usually be resolved by
aborting any of the conflicting transactions, this may be
impossible in our case, as pre-sessions cannot be rolled back.
Thus, any conflict that can only be resolved by rolling back
the pre-session may be unacceptable. Normally a deadlock
occurs in a sequence like R1(x) R2(y) W1(y) W2(x). OpSeq1
waits for the lock on y and OpSeq2 waits for the lock on x.
Due to the fact that in the DI strategy only short locks
are requested for operations in pre-sessions, the transaction
in the post-session is always able to commit. Therefore a
deadlock situation is not possible.

The drawback of this solution is the loss of isolation between
TM installation and the commit of the last pre-session. This
may be problematic because during this time interval post-
sessions are already allowed to run, leading to problems that
were not possible before TM installation and in the absence
of post-sessions.

II - immediate pre- and immediate post-session
transactions
Regarding the discussed phenomena the II strategy is similar
to DI. As in DI none of the phenomena can occur if OpSeq1
runs inside a post-session (scenario (2)). It only differs
in the scenario where OpSeq1 starts in a pre-session and
OpSeq2 runs inside a post-session (scenario (1a) and (1b)).
In contrast to DI strategy, if the TM is installed at TMI1,
neither Non-repeatable Read nor Phantom are possible for
the II strategy. The read operation in OpSeq1 requests a
long duration lock due to the fact that it still runs inside a
transaction. The phenomena that are possible in (1a) and
(1b) are summarized for strategies DI and II in table 1.

Again, a discussion about possible deadlocks is necessary.
Different from DI, deadlocks are possible in II because pre-
sessions acquire long duration locks. In case of a deadlock
it is necessary to roll back the post-session (Remember that
pre-sessions cannot be rolled back. While it is technically
possible to roll back a pre-session to the TM installation
time in II, it seems unlikely that applications could handle
this situation gracefully). The assumption that pre-sessions
commit in reasonable intervals is of equal importance as
it is for the DD strategy: Long-running pre-sessions might
otherwise accumulate locks causing post-sessions to wait for
an indeterminate amount of time.

Discussion
As already mentioned, only the DD strategy provides
seamless isolation. If this is required, DD will be the only

sensible choice. The differences between DI and II are a bit
more subtle. Both strategies have problems with pre-session
operations that occur before TM installation. Thus, their
possible phenomena are identical when installing the TM
at TMI2. II does however provide better isolation for pre-
session operations that occur after TM installation: While
the same phenomena can occur in DI regardless of TM
installation time, II does not suffer from any phenomena
when installing the TM at TMI1. This difference is explained
by the fact that in DI pre-sessions acquire only short locks
while in II they acquire long ones. It is noteworthy that the
installation time cannot be influenced: The TM is installed
as soon as the need for it arises. At this time, the pre-
sessions may already have performed actions which permit
phenomena.

3.3 Deferred Commit Strategy
In this section we present a fourth strategy, named Deferred
Commit, that is able to avoid all phenomena and yet allows
transactions in post-sessions to start immediately after the
TM installation.

Dirty Read:
pre
post

W(x) C

R(x)

Unrepeatable Read:
pre

R(x) R(x)

C

Deadlock

post
W(x)

Phantom: R(P)

C

R(P)
Deadlock

Phantom:
pre
post

R(P)

W(x in P)

R(P)

C()

TM installation

Figure 3: Phenomena

Deferred Commit is based on the II strategy with the
difference that the commits of all post-sessions are deferred
until all pre-sessions have committed. As it can be seen in
figure 3, the deferral of the COMMIT in the post-session
causes the pre-session to wait for the lock in the phenomena
Non-repeatable Read und Phantom. In these scenarios the
pre-session will never obtain the lock because the transaction
in the post-session is not able to commit until all pre-
session have committed. Therefore these scenarios result in
a deadlock. In order to resolve the deadlock, the transaction
inside the post-session has to be rolled back (see discussion
in section 3.2, paragraph “DD”).

The advantage of the Deferred Commit strategy is that all
post-session are able to start their transaction immediately
after the TM installation which reduces the deferral
problems of DD. Transactions in post-sessions, however, still
have to wait for the COMMIT of all pre-session before being
able to commit. In conclusion, the DC strategy allows higher

concurrency than DD by being able to process post-session
operations while pre-sessions are still running.

4. RUNTIME-ADAPTABLE TM
The CoBRA DB architecture of the runtime-adaptable
TM has been described in [12]. This section provides a
short outline. The basic challenge of the CoBRA DB
project is to modularize a DBMS architecture and to define
interfaces for DBMS modules such that a modular DBMS
can be adapted to different environments by assembling
prefabricated CoBRA DB components. The decomposition
and interface definitions in CoBRA DB target the creation
of reusable DBMS infrastructure components for utilization
in the development of arbitrary DBMSs projects. Since
transaction management is a cross-cutting concern, CoBRA
DB instruments aspect-orientation for its modularization.
From a technical point of view, we used dynamic Aspect-
Oriented Programming (d-AOP) [6] as basis for runtime
adaptation. For proof of concept, we chose SimpleDB [20]
with its well-described architecture as a basis, removed the
TM, and re-integrated it with d-AOP.

A clear definition of requirements regarding the architecture
of a DBMS with runtime-adaptable TM helps the
understanding of the field of problems that arise from the
separation. There are two perspectives of design autonomy,
one from the viewpoint of the TM and another from the
viewpoint of the residual DBMS.

DBMS autonomy:
independence of the DBMS from the TM
For two reasons, it is required that the DBMS is independent
from the TM: 1) The TM can be activated and deactivated
on demand. 2) As the TM represents a cross-cutting
concern in traditional database systems’ architectures, many
changes of different components might be necessary if the
TM changes.

TM autonomy:
independence of the TM from the DBMS
The independence of the TM from the other DBMS
components is required by several reasons: 1) Changes
to the underlying DBMS must not require changes to the
TM. 2) The TM is developed once and deployed often in
different customized DBMSs. This can minimize costs of
maintenance and development. 3) In a modular DBMSs
also the residual layers or components can be exchanged on
demand. Such reconfiguration must not require the change
of other modules like the TM. Therefore, the TM has to
be designed such that it is affected as little as possible by
adaption of other modules.

In contrast to the DBMS autonomy, the TM autonomy
can only be achieved to a certain degree. Linking the TM
to a DBMS depends intrinsically on the database system:
especially the subsystem for recovery requires access to
internal structures of the DBMS for accomplishing its task.
Nevertheless, maintainability can be achieved by a subtle
architecture as far as possible by encapsulating the code that
takes part in the linkage in self-contained classes apart from
the core logic of the TM.

Architecture outline
The linkage between the TM and the DBMS is represented
by Transaction and TransactionAspect in figure 4. Each
instance of Transaction represents exactly one transaction.
Transaction is DBMS-independent. It is used to couple
the operations of the underlying DBMS to the TM and for
this purpose its interface provides operations like commit

and rollback. The TransactionAspect realizes the DBMS-
dependent linkage of Transaction to the DBMS. It contains
the relevant advices, from aspect-oriented programming
methodology, that invoke the corresponding methods of
Transaction.

The log subsystem provides logging required by the recovery
system and it is independent of the recovery strategy and
mechanisms. The concurrency subsystem realizes the
concurrency manager of the TM. ConcurrencyMgr provides
the interface for Transaction; i.e. there is an instance of
ConcurrencyMgr for each transaction. The implementation
is DBMS-independent and the locking policy can be
exchanged by switching the concurrency module with
different implementations. Recovery management is
represented by the recovery subsystem. It depends on the
storage structure of the DBMS. In order to achieve DBMS-
independence, the Template Method Pattern is implemented
to achieve the autonomy of the essential recovery procedures.
In our prototype, we use a pure undo recovery strategy that
could be exchanged by a redo/undo-recovery strategy.

In order to facilitate a generic representation of data, being
independent of the types that are present in the underlying
system, a hierarchy of special classes in the subsystem
types has been designed. Serializable represents a basic
interface for serializing and deserializing classes. Classes
that model types of the underlying DBMS additionally
implement the DBType interface such that it provides a
type identifier. The type identifier is used inside the log
file. In conclusion, the DBMS-specific parts of the TM are
represented by the TransactionAspect with its advices and
some DBMS-specific types classes for log file serialization
purpose.

Global Tracking of Transactions
One of the most challenging technical problems is the global
tracking of transactions. Global tracking of transactions
is necessary for relating method calls to corresponding
transactions. This is required for the locking manager as
well as commit processing and recovery. [13] has already
discussed this fundamental problem without offering an
acceptable solution.

Our solution is to use information about threads in order
to track the transactions. We save the correlation between
thread and transaction for each client session. With this
solution, we can determine the context of a transaction for
any method during runtime.

5. RELATED WORK
Realizing the need for adaptable DBMSs in specific
environments respectively for specific applications is not
new. Dittrich and Geppert [7] point out the drawbacks
of monolithic DBMSs and propose componentization as a

possible solution. They identify four different categories of
CDBMSs (component DBMSs):

• Plug-in Components. The DBMS implements all
standard functionality, and non-standard features can
be plugged into the system. Examples for this category
are Oracle Database [1], Informix [16] and IBM’s DB2
[5].

• Database Middleware. DBMSs falling in this category
integrate existing data stores, leaving data items under
the control of their original management system, e.g.
Garlic [19], Harmony [17], and OLE DB [4].

• DBMS Services. DBMSs of this type provide
functionality in standardized form unbundled into
services, e.g. CORBAservices [2].

• Configurable DBMS. DBMSs falling in this category
are similar to DBMS services, but it is possible to
adapt service implementations to new requirements or
to define new services. An example is the KIDS project
[8].

The principles introduced in the context of SOA (service-
oriented architecture) are also suitable for building modular
DBMSs. [21] present an approach towards service-based
DBMSs. They adopted the architectural levels from Härder
[10] and plan to include the advantages introduced by SOA
like loosely coupled services. They define four different
layers and propose their realization as services. It is
argued that a DBMS that is built upon this architecture
is easily extensible because services can be invoked when
they are needed and in case of failure of services alternative
services can answer the request. Tok and Bressan [23] also
introduce a DBMS architecture based on service orientation,
called SODA (Service-Oriented Database Architecture). In
their DBNet prototype, web services are used as the basic
building blocks for a query engine. In contrast to our
approach these approaches use distributed services involving
a coarse grained architecture and communication via RPC,
RMI, web services or other technologies for distributed
communication.

[22] discusses the advantages and disadvantages of the
aspect-oriented methodology for DBMS architecture; for
this purpose Berkeley-DB as a modular DBMS was
refactored with standard Aspect-Oriented Programming
(AOP) for maintenance purposes. The FAME-DBMS
project [18] utilizes the Software Product Lines (SPLs)
approach to implement customized DBMSs. ”With this
approach a concrete instance of a DBMS is derived by
composing features of the DBMS product line that are
needed for a specific application scenario” [18]. They use
aspect and feature oriented programming to implement the
SPLs. In the scope of this project, [13] refactored Berkeley-
DB with AspectJ.

Another approach to develop a tailor-made DBMS is
presented in [15]. The COMET DBMS (component-
based embedded real-time database management system) is
intended for resource constrained embedded vehicle control-
systems. The customization is achieved by providing a set

transactionSystem

<<Aspect>>

TransactionAspect Transaction

transactionSystem.concurrency

ConcurrencyMgr

transactionSystem.log

<<Singleton>>

LogFile LogFileIterator

transactionSystem.recovery

RecoveryMgr

SimpleDBRecoveryMgr

transactionSystem.types

<<Interface>>

Serializable

<<Interface>>
DBType

<<Interface>>
TypeFactory

<<Singleton>>

TypeFactoryImpl

Figure 4: Architecture of the TM

of components that can be made up to a specialized DBMS
by selecting components that meet the requirements. The
partitioning and therefore the possibilities to customize are
coarse grained as there are only seven components identified.
The major difference to our approach is that these DBMSs
are tailored at compile time and do not support adaptation
at runtime. Therefore, to best of our knowledge, this is the
first research discussion about the semantics of a runtime-
adaptable TM.

6. CONCLUSION AND FUTURE WORK
Existing component- and service-based DBMSs have in
common that changing their behavior often requires a
shutdown of the whole system. In the CoBRA DB project
we are implementing a DBMS that is adaptable at runtime.
The addition of the TM at runtime poses a challenge
due to its cross-cutting characteristics. We outlined the
TM architecture of our prototype to provide a technical
foundation for a runtime-adaptable TM.

The core of this paper is the introduction of different
approaches to install a TM during runtime. We discussed
the implications that arise in a DBMS that is working
without TM and proposed a programming model regarding
a prospective TM installation. Potential schedules of
operations are examined with regard to the ANSI
SQL phenomena: Dirty Read, Non-repeatable Read, and
Phantom. Therefore the different schedules of these
phenomena are discussed with regard to their execution
inside the pre- and post-session. We concluded this
discussion with the Deferred Commit strategy as the
strategy that solves the most of the discussed problems.

In this paper we restricted our discussion to the three ANSI
SQL phenomena. However there exist other semantical
problems that are not discussed in the SQL standard [3].
We are currently investigating these phenomena with regard
to our proposed solution.

7. REFERENCES
[1] S. Banerjee, V. Krishnamurthy, and R. Murthy. All

your data: the Oracle extensibility architecture.
Component database systems, pages 71–104, 2001.

[2] R. Bastide and O. Sy. Formal specification of CORBA
services: experience and lessons learned. Proceedings
of the 15th ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and
applications, pages 105–117, 2000.

[3] H. Berenson, P. Bernstein, J. Gray, J. Melton,
E. O’Neil, and P. O’Neil. A critique of ANSI SQL
isolation levels. SIGMOD Rec., 24(2):1–10, 1995.

[4] J. A. Blakeley. Data access for the masses through
OLE DB. SIGMOD Rec., 25(2):161–172, 1996.

[5] J. Cheng, J.; Xu. XML and DB2. Proceedings of the
16th International Conference on Data Engineering
(ICDE), pages 569–573, 2000.

[6] R. Chitchyan and I. Sommerville. Comparing
Dynamic AO Systems. In Dynamic Aspects Workshop
(DAW 2004), Lancaster, England, März 2004.

[7] A. Geppert and K. R. Dittrich. Component database
systems: introduction, foundations, and overview.
Component database systems, pages 2–28, 2001.

[8] A. Geppert, S. Scherrer, and K. R. Dittrich. KIDS:
Construction of database management systems based
on reuse. Technical Report ifi-97.01, University of
Zurich, 1997.

[9] J. Gray. The Next Database Revolution. In ACM
SIGMOD International Conference on Management of
Data (SIGMOD 2004), pages 1–4, New York, NY,
USA, Juni 2004. ACM.

[10] T. Härder. DBMS Architecture - Still an Open
Problem. In G. Vossen, F. Leymann, P. C.
Lockemann, and W. Stucky, editors, 11.
GI-Fachtagung für Datenbanksysteme in Business,
Technologie und Web (BTW 2005), volume 65 of LNI,
pages 2–28. GI, März 2005.

[11] F. Irmert, M. Daum, and K. Meyer-Wegener. A New
Approach to Modular Database Systems. In Software
Engineering for Tailor-made Data Management
(SETMDM 2008), pages 41–45, März 2008.

[12] F. Irmert, C. Neumann, M. Daum, N. Pollner, and
K. Meyer-Wegener. Technische Grundlagen für eine
laufzeitadaptierbare Transaktionsverwaltung. In BTW
2009, 2009.

[13] C. Kästner. Aspect-Oriented Refactoring of Berkeley
DB. Diplomarbeit, Otto-von-Guericke-Universität
Magdeburg, School of Computer Science, Department
of Technical and Business Information Systems,
Februar 2007.

[14] J. Melton. ISO/IEC 9075-2:2003 - Foundation
(SQL/Foundation). International Organization for
Standardization (ISO), 2003.

[15] D. Nyström, A. Tesanovic, C. Norström, and
J. Hansson. The COMET database management
system. MRTC report ISSN 1404-3041 ISRN
MDH-MRTC-98/2003-1-SE, Mälardalen Real-Time
Research Centre, Mälardalen University, April 2003.

[16] M. A. Olson. Datablade extensions for
informix-universal server. In COMPCON ’97:
Proceedings of the 42nd IEEE International Computer
Conference, page 143, Washington, DC, USA, 1997.
IEEE Computer Society.

[17] U. Röhm and K. Böhm. Working together in harmony
- an implementation of the CORBA object query
service and its evaluation. In ICDE’99: Proceedings of
the 15th International Conference on Data
Engineering, 23-26 March 1999, Sydney, Austrialia,
pages 238–247, 1999.

[18] M. Rosenmüller, N. Siegmund, H. Schirmeier,
J. Sincero, S. Apel, T. Leich, O. Spinczyk, and
G. Saake. FAME-DBMS: Tailor-made data
management solutions for embedded systems. In
Software Engineering for Tailor-made Data
Management, pages 1–6, 2008.

[19] M. T. Roth and P. M. Schwarz. Don’t scrap it, wrap
it! A wrapper architecture for legacy data sources. In
M. Jarke, M. J. Carey, K. R. Dittrich, F. H.
Lochovsky, P. Loucopoulos, and M. A. Jeusfeld,
editors, VLDB’97, Proceedings of 23rd International
Conference on Very Large Data Bases, August 25-29,
1997, Athens, Greece, pages 266–275. Morgan
Kaufmann, 1997.

[20] E. Sciore. SimpleDB: a simple java-based multiuser
system for teaching database internals. In 38th ACM
Technical Symposium on Computer Science Education
(SIGCSE 2007), pages 561–565, New York, NY, USA,
März 2007. ACM.

[21] I. Subasu, P. Ziegler, and K. R. Dittrich. Towards

Service-Based Data Management Systems. In
Datenbanksysteme in Business, Technologie und Web
(BTW 2007), Workshop Proceedings, 3-86130-929-7,
pages 296–306, March 2007.

[22] A. Tešanović, K. Sheng, and J. Hansson.
Application-tailored database systems: A case of
aspects in an embedded database. In 8th International
Database Engineering and Applications Symposium
(IDEAS 2004), pages 291–301, Washington, DC, USA,
Juli 2004. IEEE Computer Society.

[23] W. H. Tok and S. Bressan. DBNet: A service-oriented
database architecture. In DEXA ’06: Proceedings of
the 17th International Conference on Database and
Expert Systems Applications, pages 727–731,
Washington, DC, USA, 2006. IEEE Computer Society.

