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ABSTRACT
Visual-word-based image categorization has proven to be very
effective in several publications and contests. Recently, vari-
ous approaches have been proposed to address the need for
scalability and computational performance of classification
based on Bag of Words. Despite these efforts, extensibility
still remains an issue. Classifiers and histograms of visual
words are both heavily dependent on an immutable general
visual vocabulary created during the training step based on
training images. Adding a new category that is insufficiently
represented by the visual words in the vocabulary requires
recreation of the visual vocabulary, complete recomputation
of histograms and retraining of classifiers. When adding a
new category, current approaches need to fully rebuild the
whole recognition system. We address the problem of exten-
sibility by combining class-specific vocabularies with outlier
visual words. Classification is achieved by computing a scor-
ing function for each class-specific vocabulary and selecting
the highest score value. We show first results of our highly
parallelizable and distributable approach on the Caltech 256
dataset.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Image databases; H.3.3 [Information Storage and Re-
trieval]: Information Search and Retrieval

General Terms
Experimentation

Keywords
object recognition, bag of words, extensibility

1. INTRODUCTION
In recent years, significant steps have been taken to address

the problem of classifying a huge number of categories. [2]

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
VLS-MCMR’10, October 29, 2010, Firenze, Italy
Copyright 2010 ACM 978-1-4503-0166-4/10/10 ...$10.00.

estimates that humans are able to readily distinguish 30,000
objects (assuming 10 types for each of the estimated 3,000
categories). Current object recognition approaches still do
not scale well enough and are far away from achieving good
classification accuracy for such a high number of categories.
Besides scalability and computational performance another
issue remains open: extensibility.

Many current approaches for object recognition like [3,
18, 28, 31] are based on the popular and very successful
Bag-of-Words model. First, points of interest are extracted
from training images using sparse or dense sampling and
then described by local descriptors like SIFT [16]. For dimen-
sionality reduction, all or a sampled part of the descriptors
extracted from all the training images are clustered by k-
means into a visual vocabulary. Each cluster center resembles
a visual word. The resulting vocabulary is used for comput-
ing the histogram of visual words for each training image by
assigning each descriptor to the closest visual word in the
vocabulary. Various discriminative and generative strategies
have been proposed for learning the class-label relationships.
The most successful approaches use k-Nearest Neighbors
(kNN) or Support Vector Machines (SVMs) combined with
specialized kernels and diverse strategies for estimating the
optimal weights.

Our ultimate aim in the Pixtract1 project is to build
an image annotation and search framework as depicted in
figure 1. We have evaluated several user studies regarding
image search for art [4], history [5], press [1, 7, 25] and web
[9, 12, 13] and have concluded that image search is and in
the future still will be text-based. Consequently, our idea is
to separate image annotation and image search. The latter
is implemented based on text annotations and established
text indexing methods. For the text-based image search to
work well, good text annotations must be provided. From
the previously mentioned user studies we collected following
requirements for text annotations of images: people, objects,
locations, events and actions present in the image should
always be annotated, because they are often searched for.
However, colors, shape, texture and abstract concepts like
emotions or impressions are less often searched for and can be
neglected. For annotating objects we use object recognition
based on the Bag-of-Words model. Categories are learnt from
user-selected groups of images depicting one single category
and stored as object identifiers. In the course of time, the
annotation system is more than likely to grow. Our current
effort in this paper is to establish an easily extensible concept
for the object identifiers.

1Picture Annotation Extraction
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Figure 1: Image annotation and search framework.

The major problem regarding the extensibility of Bag-of-
Words approaches is the immutability of the visual vocabu-
lary. After creating the vocabulary in the training step, it
remains unchanged for ever. Also the histograms of visual
words, the classifiers and therefore the classification accu-
racy are heavily dependent on the suitability of the visual
vocabulary. If a new category has to be introduced to the
recognition system, the vocabulary needs to be extended. In
current approaches, this results in a complete recomputation
of the visual vocabulary, the histograms of visual words for
all training images and the training of classifiers. Adding a
new category currently requires the rebuilding of the whole
recognition system.

Recently, hierarchical approaches were proposed for making
Bag of Words more scalable and more efficiently computable.
These approaches are still not easily extensible, but they
guided us to the idea to use several vocabularies instead of
one general vocabulary. We address the problem of the ex-
tensibility of the Bag-of-Words model by using class-specific
vocabularies as introduced in [8, 27]. Instead of merging
class-specific vocabularies into one single general vocabulary
and computing histograms of visual words and classifiers, we
keep our class-specific vocabularies independent and propose
a scoring function for computing category membership for
images. The proposed method is easily extensible, highly
parallelizable and distributable.

The rest of the paper is organized as follows: In the next
section we discuss the major drawbacks of the Bag-of-Words
model regarding the static vocabulary when dealing with
extensible image categorization. In section 3 we give an
overview of related work. In section 4 we describe our pro-
posed method in detail. We show first results and discuss our
achievements in section 5. We address some further steps
that need to be taken towards an extensible image annotation
system in section 6.

2. PROBLEMS WITH BAG OF WORDS
In this section we point at two major problems regarding

the visual vocabulary: the optimal choice for the number of
visual words (k) and the issue of extensibility. Afterwards
we discuss possible solutions for the extensibility question.

2.1 Issues with the Visual Vocabulary
One of the main problems of Bag-of-Words approaches –

addressed in [14, 29] – is the accurate choice of the value k
in the creation of the visual vocabulary. Besides reducing

the dimensionality, the visual vocabulary also has the task of
grouping together noisy versions of the same or very similar
descriptors. The bigger the value k, the smaller the clusters
providing a good precision for the descriptor, but lowering the
probability that a noisy version of a descriptor is assigned to
the correct visual word. With smaller k values the clusters get
bigger assuring that almost all noisy versions of a descriptor
are assigned to the same visual word, while reducing the
discriminative power of single visual words. Choosing the
right k is a compromise between the quantization noise and
the descriptor noise.

Another major problem of commonly used Bag-of-Words
approaches is the immutability of the vocabulary. The visual
vocabulary is usually generated only once during training
based on the training data and is fixed for all future images.
Imagine now the situation of adding a new category to the
already existing and learnt ones. The previously learnt and
fixed vocabulary will likely not contain enough visual words
that would accurately describe the points of the new category.
For example, take a vocabulary that was created based on
fruit images and try adding the category motorbike. Figure 2
shows histograms of visual words for images depicting a grape
and a motorbike using a fruit vocabulary constructed with
k = 300 from apple, banana and grape images. Clearly, the
descriptors of the motorbike image cannot be assigned well
to the visual words of the fruit vocabulary. Obviously, the
visual words in the vocabulary are not discriminative enough
for new categories.

(a) grape (b) motorbike

Figure 2: Histograms of visual words for objects suf-
ficiently (grape) and insufficiently (motorbike) rep-
resented in the fruit visual vocabulary.

2.2 Extensibility of the Visual Vocabulary
We concluded that the visual vocabulary needs to be ad-

justed to contain words also from new categories. Following
options can be considered as a solution:

1. use a general-purpose visual vocabulary,

2. recompute the general visual vocabulary

(a) every time a new category has been added,

(b) after the discriminative power of the vocabulary
falls below a predefined margin, or

3. use class-specific vocabularies instead of one static gen-
eral vocabulary.

The first option has the advantage that the vocabulary
never changes, histograms don’t need to be recomputed and
class-label relationships don’t need to be relearned. But
several questions arise: How to create a general-purpose
vocabulary? How many and which visual words should the
general-purpose vocabulary contain to be able to distinguish
3,000 categories? In [29] it was shown that the optimal size
of the vocabulary (regarding classification accuracy) clearly
depends on the training image set. Obviously the previously
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enumerated questions cannot be answered unless the future
categories, that are likely to be added to the system are
known.

Another option would be to regularly recompute the gen-
eral visual vocabulary. This could be done every time after
adding a new category or after reaching a defined margin
measuring the loss of discriminative power of the visual words
in the vocabulary. The main benefit of this solution is that
the general vocabulary always adapts to the categories in the
system and can also be extended during its lifetime. Another
positive effect would be, that after learning a huge amount of
categories the vocabulary would turn into a general-purpose
vocabulary which never ever has to be changed. For this
adaptability one has to pay with high and steadily increasing
computational costs. Every time the vocabulary changes,
all the histograms of visual words have to be recomputed
for all categories and the class-label relationships need to
be relearned from scratch. Obviously, this solution is not
practicable.

In the third option separate class-specific vocabularies
are computed for each class instead of a general-purpose
visual vocabulary. With this approach, histograms of visual
words are not required any more. Other benefits are, that
the system is easily extensible with new categories and no
recomputation of any already learnt categories is needed.
This approach can also be easily parallelized, distributed
and used in a hierarchy. The only disadvantage is, that
instead of training a classifier with established methods like
SVMs a good scoring function is needed to compare different
categories for a given image.

3. RELATED WORK
In this section we first present approaches using class-

specific vocabularies; in a second part we discuss methods
similar to class-specific vocabularies – that is hierarchical
vocabularies – and finally we briefly introduce hierarchical
approaches for classification.

3.1 Class-Specific Vocabularies
Class-specific vocabularies were not really popular in the

recent past. Most Bag-of-Words approaches like [3, 18, 28,
31] use a single vocabulary generated with k-means using
keypoints extracted from all training images. [8] introduce
the idea of building class-specific vocabularies and merging
these into a single general vocabulary. The main benefit
of computing class-specific vocabularies first is that class
labels are incorporated in the clustering of keypoints, while
this discriminative information would have been lost during
all-at-once clustering. Following this idea, [27] first creates a
general vocabulary based on all training samples. The gen-
eral vocabulary is then adapted using class-specific training
samples which results in class-specific vocabularies. For each
category both the general and the class-specific vocabularies
are then joined as bipartite histograms and used as input
for one-vs-all SVMs. Neither approach is extensible because
after adding a new category the whole training and learning
has to be repeated.

3.2 Hierarchical Vocabularies
Hierarchical vocabularies or vocabulary trees are related

to class-specific vocabularies because single or groups of leaf
nodes might represent separate classes. Due to the scalability
issue, recently several approaches addressed the problem of

organizing visual words in a hierarchical vocabulary tree. [24]
adapted the kD-tree approach of [16]. Their tree is heavily
dependent on the training set and needs to be reconstructed
from scratch if new categories are added. [23] proposed a
hierarchical top-down k-means algorithm for organizing large
numbers of visual words in a vocabulary tree. Leaf nodes
represent single visual words and use a scoring function for
creating an inverted list of images containing the given visual
word. The vocabulary tree is created only once during the
training step and remains unchanged even if new images are
added. New images are only added to the inverted lists in
the leaf nodes, so adding several new categories will sooner
or later require the recomputation of the whole vocabulary
tree.

3.3 Hierarchies for Classification
Many Bag-of-Words approaches use SVMs for classification.

For multi-class classification, several binary SVMs have to
be trained. Traditionally, multi-class SVMs are implemented
as one-vs-one (voting, 1:1), one-vs-all (competition, 1:N), or
gradual exclusion via a directed acyclic graph (DAG). The
latter two have linear, while 1:1 has quadratic complexity
depending on the number of classes. With an increasing num-
ber of categories in the field of object recognition, several
approaches addressed the problem of building classification
hierarchies to classify images with polylogarithmic, logarith-
mic or even constant complexity.

One of the simplest approaches is to build a binary or
k-nary tree of subsequent SVMs like proposed in [15, 30].
[11] derives a visual taxonomy represented by a binary tree
of SVMs on the Caltech 256 dataset. For the top-down
approach, a spectral clustering algorithm is applied, while
the bottom-up approach subsequently combines pairs of cat-
egories with highest pairwise confusion. The resulting visual
taxonomy proves the hypothesis that visual and lexical simi-
larities between objects can be divergent. [19] implements a
DAG-SVM based on the Caltech 256 dataset which appears
to scale better than other hierarchical SVM approaches.

Other approaches try to incorporate external knowledge
about relationships between objects into the hierarchy of
SVM classifiers. Sources for object relationships are either
home-built taxonomies or empirical ontologies like WordNet
[22]. [32] uses four different object hierarchies for the combi-
nation of object classifiers and achieves both higher precision
and higher recall. [17] extends the labels assigned to training
images with lexical relationship for words extracted from
WordNet and learns an extended hierarchical model with
SVMs. Although the evaluation showed no performance in-
crease, the complexity was reduced to sublinear. Despite the
efforts of incorporating lexical relationships to the task of
object recognition the question whether lexical and visual
relationships are parallel or orthogonal remains open.

All approaches in this section present steps towards a more
efficient and scalable object recognition, but all still rely on
a previously computed static vocabulary and therefore are
not dynamically extensible with new categories.

4. PROPOSED METHOD
As discussed in section 2, a static vocabulary has draw-

backs when handling the problem of extending the number of
learnt categories. As a first step, we propose a new method
inspired by common image retrieval algorithms, hierarchical
approaches, clustering and kNN classification. In the follow-
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ing sections, we describe the main idea as well as the steps
for training and classification using our method in detail.

4.1 Main Idea
Our proposed method addresses the problem of adding a

new category to an object recognition system based on the
Bag-of-Words model. Classic Bag-of-Words approaches use
a fixed visual vocabulary created during the training step.
Although the visual words in the vocabulary describe images
well that belong to categories used for training, they are
inaccurate for the description of images of previously unseen
categories.

From a top-down perspective, visual vocabularies can be
separated for different category groups getting as many his-
tograms of visual words for each image as vocabularies are
used. This could be seen as a variation of the idea proposed
in [26], where bipartite histograms are used to distinguish
whether an image belongs to a given class or to other classes.
The current scenario results in n-partite histograms. Follow-
ing this idea, visual vocabularies could be separated further
on deeper levels, too (like apple, banana, grape, orange vo-
cabularies for fruit categories etc., see figure 3), arriving at
the point where for each category a separate vocabulary is
used. So, the number of histograms of visual words to be com-
puted equals the number of different categories on the current
branch of the hierarchy. During the training a classifier also
need to be trained for each node in the hierarchy.

Figure 3: Example object hierarchy.

From a bottom-up perspective, a class-specific vocabulary
could be computed first for each category. The class-specific
vocabularies could then be merged together into grouped
class vocabularies. This merging step could be repeated
several times, resulting in a hierarchy where the root node
contains a general-purpose visual vocabulary like in [8, 27].
In the end still as many histograms of visual words need
to be computed for each image as many different categories
there are on the current branch of the hierarchy. Another
problem is, that with the addition of a new leaf category,
all vocabularies of inner nodes along the path from the new
category to the root node would need to be recomputed -
along with the computation of all histograms of visual words
for each training image and the retraining of classifiers.

Based on this line of thought, our idea is to extract indepen-
dent class-specific vocabularies for each category separately.
Because of variations in the object representation and back-
ground changes we assume that only a part of all visual words
found in images belonging to a category are truly relevant
for the description of the given category. Therefore only
those visual words are kept in the class-specific vocabulary,
that appear most frequently in images belonging to the given
category. This also results in several ”outlier” visual words,
which don’t belong to the top visual words for a given cate-
gory. Our hypothesis is that later in the classification step,
images of objects belonging to their class should have less

outliers than images of objects belonging to other classes. To
leverage the computation of histograms of visual words, the
vocabulary and the histogram of visual words are merged
into a single class description. As a result, each class-specific
vocabulary contains an additional value for the frequency of
a visual word in an ”average” image belonging to the given
category. Instead of the repeated training of classifiers we
propose a scoring function inspired by classic image retrieval
approaches.

4.2 Learning Class Descriptions
Class-specific vocabularies are computed instead of a gen-

eral vocabulary. First, each image is scaled to 128x128 pixels,
converted to HSV color space, then points of interest are
extracted using the Hessian Affine detector from the V chan-
nel and SIFT descriptors are computed using the software
provided by [20, 21]2. This way we get about 275 SIFT de-
scriptors on average per image using the Caltech 256 dataset
provided by [10]. In the next step all SIFT descriptors of
all training images of each class are clustered with k-means
using the L2 distance. After clustering the frequency of the
points for each cluster are computed and the clusters are
sorted according to their population. The top n clusters are
kept for each class (n < k). Next, the means for each of
the n clusters (class-specific visual words) and the maximum
distance between a point belonging to a given cluster and
its mean (cluster radius) are computed. For each class the
values of the top n visual words, the average number of points
per visual word and per image belonging to the cluster and
the cluster radius are stored as a class description (object
identifier). This way we get for each class a vocabulary
containing n visual words along with the information how
much noise is allowed for a descriptor to be assigned to the
corresponding visual word and how often these visual words
appear on average in a single image. In other words: we
merged the visual vocabulary with the histogram of visual
words.

4.3 Scoring and Classification
The first steps of classifying previously unseen images are

similar to the training (resizing, detection of points of interest,
SIFT descriptors). For measuring the similarity between an
image I and a class description C a good scoring function is
required. The idea is to assign each descriptor of image I to
the n cluster centers of the class description C using the L2
distance and the allowed noise (cluster radius). Descriptors
having a bigger distance to their closest cluster centers than
the radius of the cluster allows are considered as ”outliers”
and are assigned to a special outlier cluster n+1. We assume
that the number of outlier descriptors will be lower for images
from the same class than for images from different classes.
Next for all clusters the number (freq(Ii)) and the average
distance (avgdist(Ii)) of the descriptors of the given image I
are computed. freq(Ci) is the average number of descriptors
for cluster i in class description C. For the outlier cluster
freq(Cn+1) is set to 0 and for avgdist(In+1) the average
distance of all outlier descriptors is computed. The average
distance should already be quite high because the outliers
don’t belong to any visual word in the class description and
the more outliers there are, the higher this average outlier
distance is weighted by freq(In+1). This way we have already
included a penalty for outliers in our scoring function. Based

2http://www.robots.ox.ac.uk/∼vgg/research/affine/
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on these values the score for image I and class description C
is computed using the following scoring function:

score(I, C) =
1

1
n+1

∑n+1
i=1 |freq(Ci)− freq(Ii)| · avgdist(Ii)

(1)
The closer an image gets to the class description, the

higher the value of score(I, C), so, intuitively, image I is
assigned to the class C with the highest score value. There
are several parameters in our proposed method that need
further exploration. We will show our first results in the
following section.

5. EXPERIMENTS AND DISCUSSION
In our experiments, we try to find the optimal values for

the initial number of clusters (k) and the number of most
populated visual words to be kept as class descriptions n.
For all tests we used the scoring function from equation 1,
the Caltech 256 dataset provided by [10] and 20 training
images per category. All tests have been repeated for 100
different combinations of 3, 4, 5, 10 and 20 categories and the
classification precision has been averaged to get an impression
how general the approach is.

First we wanted to see how the classification accuracy
behaves for different numbers of clusters k. We fixed the
ratio of n/k at 0.5, so we always kept half of the clusters as
class descriptions. We experimented with k = 40, 60, 80 and
100. We didn’t try higher values for k because the average
number of descriptors per image is 275 for 128x128 pixel
images using Hessian Affine detector and SIFT descriptor
on the V channel. The results are shown in figure 4(a).
Similarly to [23] we found that – even for the class-specific
vocabulary case – the bigger the vocabulary, the better the
classification accuracy. Further investigation is required for
determining the optimal ratio between the average number
of descriptors per image and the number of visual words k
for the vocabulary computation.

Next we wanted to know how much we can trim the class-
specific vocabularies on average without losing classification
accuracy. Because in the previous step we got the best results
using k = 100, we experimented with keeping the top n = 5
to n = 90 visual words. The results are shown in figure 4(c).
On average about 20% of visual words for each class-specific
vocabulary are sufficient for achieving same precision as with
a higher number of visual words. We also repeated our tests
using the Harris Affine detector and the SIFT descriptor.
The results depicted in figure 4(d) show a similar limit around
20-25%. The question how general the optimal ratio n = k/5
is, needs further investigation using different detectors and
vocabulary sizes. Figure 4(e) shows a ROC curve for k = 100
and n = 5 to n = 50. The current area under curve is around
0.72, which is good but needs further improvement.

We also implemented tests to verify our hypothesis that
images of objects belonging to a given class have less outliers
than images of objects belonging to other classes. Figure 4(b)
shows the relation of the number of class outliers compared
to the number of non-class outliers. Our assumption that
images of objects belonging to a given class have less outliers
than images of objects belonging to other classes was proven
right in all scenarios. In further improvement of our scoring
function we plan to integrate this knowledge and penalize
outliers more heavily to improve classification accuracy.

6. CONCLUSION
We propose an extensible approach for object recognition

based on the Bag-of-Words model. The main idea is to
compute independent class-specific vocabularies instead of
one static general vocabulary. Without a general vocabulary,
we are unable to compute fixed length histograms of visual
words for SVMs, so we merged the histograms and the class-
specific vocabularies and introduced a scoring function which
calculates the closest category based on the class-specific vo-
cabularies. Our proposed method is clearly easily extensible
by new categories without the need of heavy recomputation.
The evaluation of our approach on the Caltech 256 dataset
shows promising results, but scalability still remains an issue.

In the future, we will evaluate our approach using color
channels, various distance measures, incorporating spatial
information, different features and their combinations. This
also might require adjustments in our scoring function which
we plan to evolve, too. Other future work is the extensible
hierarchical organization of our independent class-specific
vocabularies according to visual and lexical similarities.

Our approach is highly parallelizable and distributable.
Both the training and the classification steps are currently
optimized for multi-core CPUs. Further steps are to imple-
ment our approach with MapReduce [6] and boost computing
time by using large clusters.
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