
M2etis: An adaptable Publish/Subscribe System for
MMVEs based on Event Semantics

Thomas Fischer, Johannes Held, Richard Lenz

{thomas.fischer, richard.lenz}@cs.fau.de,
mail@johannesheld.net

Abstract: Massive Multiuser Virtual Environments (MMVEs) have grown
to a huge industry in recent years. They allow for simultaneous activity of
thousands of players in a virtual world. Distributed event-based systems are
a promising approach to reach both performing and scalable architectures.
The potential of these architectures can only be fully exploited if event se-
mantics are used to optimize event handling. In this paper we introduce the
Massive Multiuser Event InfraStructure (M2etis), an adaptable and opti-
mizable publish/subscribe system, which is capable of channel-wise multidi-
mensional optimization. We describe the arising challenges and propose a
possible solution to the design of such a publish/subscribe system.

1 Introduction

Internet scale distributed applications have risen to industrial significance over the
last years. One of the most growing markets in this area are virtual environments in
general and Massive Multiuser Virtual Environments (MMVEs) in particular. This
promising market states some unique challenges for designers, software architects
and especially researchers.

MMVEs define a distributed virtual world shared by thousands of participants, each
represented by an avatar, who compete and cooperate in one shared persistent
world. This world may be for entertainment as in Massive Multiplayer Online
Games (MMOGs) or e.g. a large scale simulation. The design of a dynamically
evolving virtual world requires armies of artists and the software backing a world of
such enormous dimensions must satisfy several hard to achieve requirements, e.g.
consistency, availability, persistence and interactivity [FDI+10]. But scalability
is the main challenge of MMVE architectures: Interaction quality must be kept
high, even if the number of users and participating sites increases drastically. To
address this challenge highly adaptable and optimizable distributed architectures
are required, which are capable of dealing with increasing numbers of events of
various types.

The M2etis project aims for a holistic approach of utilizing a comprehensive set of

buettner
Schreibmaschinentext

buettner
Schreibmaschinentext

buettner
Schreibmaschinentext

buettner
Schreibmaschinentext

buettner
Schreibmaschinentext

buettner
Schreibmaschinentext
©Gesellschaft für Informatik -14. BTW 2011- Workshops und Studierendenprogramm

buettner
Schreibmaschinentext

buettner
Schreibmaschinentext

buettner
Schreibmaschinentext

different semantic properties of events that may arise in an MMVE to reduce the
communication effort between clients. Our goal is to develop a generally applicable
infrastructure for event propagation which is capable of treating each event type in
a specifically adapted way, according to its semantic properties. This enables much
larger potential for optimization than the uniform treatment of events in existing
architectures. In order to realize such an architecture, our approach follows a
channel based publish/subscribe paradigm, as many existing distributed virtual
environments communicate using this paradigm.

The underlying model for event classification is based on a multidimensional clas-
sification schema for event types, which has been described in [FDI+10]. This
initial classification schema has been derived by analyzing the characteristics and
the potential for optimization of typical event types of MMVEs. In this paper
we exemplify this classification schema, and we introduce an architecture for an
adaptable publish/subscribe system which supports a channel based optimization
of event dissemination by exploiting the semantic properties of the corresponding
event types.

The paper is organized as follows: First in section 2 we give a short introduction
into the domain of MMVEs and explain the basic problem, the M2etis architec-
ture adresses. Afterwards in section 3 we describe our notion of event semantics
followed by their exploitation in the M2etis architecture described in 4. In section
5 we describe the prototypic implementation as a proof of concept and conclude
afterwards in section 7.

2 Massive Multiuser Virtual Environments

Current industry strength MMVE architectures favour a client/server architectural
style. To cope with more and more players, tremendous effort is invested by the
usage of grid approaches like in Linden Lab’s Second Life or the deployment of
large hierarchical clusters like for the operation of CCP’s Eve Online. In general,
an MMVE consists of n interconnected nodes all being part of the same virtual
world. This world is described by a global shared state, which is the sum of the
states of all entities existing in the MMVE. Each node manages an as consistent
as possible replica of this global state and runs a game engine. This game engine is
responsible for the manipulation and the generation of a view on the world state.

Assuming the usage of a broadcast mechanism to keep the (distributed or cen-
tralized) world state consistent and that in an ideal case, all events are securely
delivered and processed in the same order nearly at the same time on all clients,
requires an effort of O(n2). It is obvious that this dissemination strategy does not
scale well. Multiplayer games like Quake 3 Arena have shown that without any
optimizations, the limit is reached by about 64 clients, depending on the required
update rate of the game.

Enabling scalability beyond that limit states a challenge. Many recent event-

buettner
Schreibmaschinentext

dissemination architectures for MMVEs [HCC06, BDL+08, BPS06, ZKD08, Fer08]
optimize the event dissemination based on one basic idea: Exploitation of event
semantics to reduce message exchange between clients.

3 Event Semantics

Events used in MMVEs feature many characteristics like for example a spatial
context in which the event is valid that may be exploited to develop specialized
dissemination algorithms. But first, when talking about event semantics, we have to
distinguish between event types and events, which means for example“item pickup”
is an event type and “player x picks up flower y at position z” is an corresponding
event.

Pickup events for example have a spatial context, persistent effects and some form
of synchronization to ensure only one player can pick up a certain flower. Spatial
context means those events are only relevant for a limited subspace of the virtual
world, therefore special multicast algorithms, which exploit spatial neighbourhood
may be used to distribute those events. Persistent effect means that the picked
up flower is added to an inventory of the character which has to survive session
boundaries. Moreover there are other dimensions like validity, delivery and security,
which all enable another dimension of optimization possibilities.

Existing approaches concentrate their efforts on event types which occur with
high frequency, mainly position updates. They tailor their architectures towards
those events, without considering other semantic aspects of event types required
by MMVEs. We strive for a more generalized approach which incorporates all
relevant event types and provide the best possible dissemination for each special
type. The semantics of each event type, which is exchanged between clients of a
virtual world, may be analysed and semantically described. Therefore we intro-
duced a multidimensional classification in [FL10], where we identified orthogonal
dimensions to model independent semantic properties for event types. We defined
disjoint characteristic classes for each dimension. To classify an event type, it has
to be assigned to one class along each dimension. Based on this scheme, the class
of an event type is defined as the sum of the characteristics along each dimension.
The power of such a multidimensional class space enables optimization of each
event type along each dimension with a different strategy in order to gain a better
overall optimization footprint of the system, than if a fixed strategy is used for the
whole system. We exhaustively discussed an initial set of dimensions with their
corresponding classes in [FDI+10].

The flower pickup example shows the variety of optimization potential each event
type has and indicates the adequateness of our multidimensional approach. The
concrete classifications in an application may vary in detail, for example depending
on the intended tolerance of the consistency in the virtual world. The consistency is
mainly controlled by the synchronization semantics, but also influenced by physical

Graphics	
Engine	

Sound	
Engine	

Physics	
Engine	

AI	
Engine	

Input	
System	

Game	 Engine	 API	

G
am

e	
En
gi
ne

	
M

2 e
:s
	

KBR	 Overlay	

M2e:s	 Pub/Sub	

Ch
an
ne

l	
Ch

an
ne

l	
Ch

an
ne

l	

M2e:s	 Op:mizer	

M2e:s	
Policy	
Repository	

M2e:s	 API	

M2e:s	 Cost	
Model	

M2e:s	
Seman:c	
Model	

Ch
an
ne

l	
Ch

an
ne

l	

Design-‐:me	 Run-‐:me	

Figure 1: M2etis components

constraints like network latency. This makes it even more important to provide
different strategies optimized to the special requirements of each event type. Based
on this multidimensional notion of event semantics a publish/subscribe system may
be designed which is adaptable and optimizable to a variety of different processing
requirements as we discuss in the next section.

4 The M2etis Architecture

To our knowledge, all existing optimization approaches address only one or two as-
pects of event semantics and propose an optimized event-dissemination architecture
for that specialized aspect. (cf. [HCC06, BDL+08, BPS06, ZKD08, Fer08]) More-
over, typically all event types are treated in the same way, despite their different
semantical properties. The M2etis project incorporates those existing approaches
in a uniform framework which considers each event type alone according to its
semantic properties and the resulting optimization capabilities.

The realization of such an architecture supporting adaptable optimizations states
many challenges. Singhal and Zyda [SZ99] identify the main technical challenge for
networked virtual environments as the management of their dynamic shared state.
We use a channel based publish/subscribe approach to exchange state change in-
formation, as it is versatile and fulfils all requirements for as identified by Singhal
and Zyda. M2etis provides a networking middleware for MMVEs which integrates
seamlessly into the reference architecture for game engines (cf. Fig. 1). One of the

core benefits of this approach is the separation of the game engine and the mes-
sage dissemination architecture, which reduces the complexity in the game engine
significantly. It is designed around the central multidimensional semantic event
classification, which makes the framework adaptable to multiple scenarios. Each
application has to provide a semantic classification of its event types according to
our schema. Based on the definition of the type itself and its semantic properties
the M2etis system decides which optimization strategy is chosen to disseminate
each event type across the participating nodes.

Fig. 1 shows the components of our architecture. The core of a node is its Pub/Sub
component. It manages one channel for each event type. The different nodes com-
municate via a key-based routing (KBR) overlay network [DZD+03]. For each
dimension a channel may be optimized along, the policy repository holds differ-
ent optimization strategies. As all required channels are known at design-time, a
channel is constructed at compile-time by the usage of applicable strategies from
the policy repository. The decision which strategy fits best is made based on a
cost model and the according semantic requirements. As this decision is made at
compile-time expensive optimization calculations do not hamper run-time perfor-
mance.

We aim for two inputs to deduce the optimized publish/subscribe channels: A se-
mantic model of the event types and a description of the parameters the cost model
should optimize upon. Therefore we identified two major challenges. On the one
hand the integration of numerous optimization approaches with their characteristic
costs and on the other hand the design of the cost model and the optimizer itself.
These are beyond the scope of this paper as we first have to show a solution for
the architectural challenge of an adaptable publish/subscribe component fulfilling
our requirements, which proofs the applicability of the M2etis approach.

To do this we have to introduce a corresponding processing model of our publish
subscribe component describing the processing behaviour at run-time, in order to
enable the multidimensional optimization of each single channel.

4.1 Processing Model

The processing model describes how the publish/subscribe system abstracts from
the KBR network, taking into consideration the different dimensions to optimize
the event dissemination.

Each channel offers the common publish/subscribe actions: subscribe, unsubscribe
and publish. Each action for each channel is connected with a corresponding type
of message sent via the network. The network is accessed via a KBR-API providing
three methods to inform about new nodes joining the network, a message being
forwarded and/or delivered to the user’s node [DZD+03].

The semantical dimensions introduced in [FDI+10] are covered by seven policies.
These policies define the interfaces for the implementation of different strategies

for each dimension and their implication on the processing of the publish/subscribe
messages. We support the following policies:
Routing is the logic of event dissemination and creates a multicast-tree.
Filter permits to attach a filter predicate to subscribtions and ensures that these
predicates are merged upwards in the multicast-tree to filter messages as early as
possible.
Delivery defines the logic of the message delivery, e.g. acknowledgements.
Order defines the synchronization strategy for a channel.
Persistence provides persistence for messages delivered to the target nodes.
Security may be used to encrypt a channel.
Validity discards invalid messages and therefore decrease the amount of messages.

The mapping between publish/subscribe and KBR actions is straight forward as
table 1 shows. All policies are involved in the delivery of publish messages. This
ensures that these messages arrive at the destination host and are not changed
while routing. Subscribe and unsubscribe messages require actions in forward and
deliver for routing and filtering purposes, as the decision of their strategies may
affect the structure of the multicast-tree.

Message- KBR- Policy for every channel

type method Routing Filter Delivery Order Persistence Security Validity

publish deliver + + + + + + +

subscribe deliver + + +

forward + + +

unsubscribe deliver + + +

forward + + +

Table 1: Matrix for policy application in the processing model

Based on the given mapping, the challenge is to find a generic application order for
the policies in the processing model as shown in figure 2.

For the distribution of a message the routing policy has to provide a list of target
nodes, to whom the message must be send. Every multicast-tree has one or more
corresponding root nodes. Subscribe or unsubscribe messages are always sent to
that nodes, while publish messages from a non-root node must always be sent to
the root nodes to trigger the publish process. Such messages are flagged to root.
On the root nodes, this flag is set to from root. Nodes sending messages as from
root return the list of subscribers as target nodes which are filtered according to
their predicate given at subscription. Finally the message is encrypted and handed
over to the network.

Decryption is the first action if a message is processed in deliver. After that sub-
scribe and unsubscribe messages are handled separately. These messages are passed
to the strategies for routing and filter to alter the multicast tree. Publish messages
on the other hand have to pass the validity check. The next step checks whether
the message must be spread i.e. distributed to other nodes. That is the case if the

Update
RoutingInfo

[{un}subscribe]

Check
Validity

[publish] [invalid]

[valid]

Order
Messages

Persist
Message

Check
Delivery

Update
Filterinfo

[not subscribed]

[subscribed]

[filter does not match]

[from root]

[filter matches]

Deliver
to Application

Decrypt
Message

Get Target-
Nodes

Encrpyt
Message

Send

[publish]

[{un}subscribe]

[from root]

[to root]
Filter

Nodes

Check
Validity

[invalid]

[valid]

Distribute
Message

Distribute Message Deliver Message

[to root]

[need to spread]

Filter
Message

Figure 2: Sending and delivery of a message

actual node is a root node or an intermediate node with distribution responsibility.
If yes, the message is distributed using the send-process explained above. Now, the
subscription and the predicate of the actual node are checked to ensure a proper
delivery if that node is subscribed, too. If the actual node is a simple subscriber
and the message is flagged from root the predicate is not tested, as it is already
checked while sending the message at the publishers side. The two paths merge
at the ordering step. As ordering may hold messages back until they are ready
the validity has to be checked again. The deliver dimension is called next offering
to send acknowledgements back to the sender. Persisting the message is the last
action before the message is finally delivered up to the application.
The handling in the forward-action from the KBR is similar to deliver as the sub-
scribe or unsubscribe information is extracted and passed to the strategies and they
may alter the message.

As failures are not detected activeley in such networks, it is important to auto-
matically renew the subscription. If nodes in the logical multicast-tree fail, the
messages are automatically routed via other hosts, rebuilding the tree. However, it
is possible that some messages are lost during the recovery. Optimization strategies
have to compensate this if required.

4.2 Optimization Strategies

For every policy M2etis provides one ore more strategies implementing an opti-
mized behaviour. For example distributed multicast algorithms for routing. The
framework permits inclusion of user-defined strategies following the required be-
haviour of the policy. Different channels use a different strategy for every policy,

creating a variety of optimization options. Each implemented strategy must pro-
vide additional cost information that is used in the optimizing step and may add
information onto each message header to enable customized treatment.

Using the example of Scribe [CDKR02] and VON [HCC06] some details of the
processing model showed in figure 2 are explained. Scribe creates a multicast-tree
trying to minimize the amount of messages while VON is neighbourhood centric
algorithm based on voronoi diagrams.

Using Scribe for routing, Get Targetnodes returns either the calculated root node
for the channel or the list of subscribed nodes to which a publication must be
forwarded. On the other hand a routing strategy like VON returns the in-game
neighbours, obtained through application-level knowledge, as each node subscribes
at his neighbours in the virtual world.

Scribe processes unsubscribe and subscribe messages in forward. Each node on
the routing path adds the sender to its list of subscribers and changes the message
to create the multicast-tree. The periodic re-subscription is triggered externally
for subscribed nodes as the channel will call its own subscribe method again or
internally for intermediate routing hops as the algorithm will resend its subscrip-
tions if other nodes down in the multicast-tree will refresh their subscription. It is
necessary that the filter strategy is always involved to ensure the correct merge of
predicates upwards the logical multicast-tree.

VON on the other hand does not need automatic periodic subscriptions, because
each node will unsubscribe and subscribe frequently. Using the example of position
updates it is obvious that each node and its neighbours move often and need to
alter their subscriptions each frame in the game.

This exemplary discussion of two different strategies indicates the generic nature
of our processing model in terms of a multidimensional optimization for pub-
lish/subscribe channels.

5 Prototypic Implementation of the Publish/Subscribe Component

Our prototypic implementation shows the applicability of this multidimensional op-
timization approach to a channel based publish/subscribe system. We chose C++
as language of choice and Chimera [AA06], a KBR-overlay as basis. In order to
minimize the overhead introduced by the flexibility of such a framework e.g. on
message size or stack depth caused by function calls, we use template metapro-
gramming (TMP) and policy based -design [Ale01] to create the optimized channels
at compile-time. The different optimization strategies for each dimension are im-
plemented as policies encapsulating their behaviour. Each channel is therefore a
template class with all dimensions as template parameters, which are instantiated
with strategies for each parameter.

With TMP it is possible to derive custom-tailored message headers, depending on

the chosen strategies. This ensures small message sizes with a high payload ratio.
Each channel itself is therefore in charge to orchestrate strategies for the different
policies with regard to our processing model, derived by the semantic description
for all optimization dimensions. All described design decisions ensure that the
system has a small footprint at runtime and that it can be used without further
knowledge of the system internals, the channels or the used strategies.

6 Further Work

Based on the introduced publish/subscribe system further work must be done to
enable self optimization in M2etis as planned. A cost model has to be developed
in order to decide which optimization strategy is optimal for different event se-
mantics. Currently we are adapting different existing optimization algorithms for
all dimensions to our processing model. Based on this variety of algorithms, mea-
surements will be taken to derive a suitable cost model for optimization, with a
simulator based on OverSim [BHK07] currently under development. Another part
of our ongoing research is the construction of a domain-specific language (DSL)
designed for the semantic description of event types and the overall system with
their optimization targets.

7 Conclusion

In this paper we introduced the M2etis architecture, an adaptable publish/subscribe
system for event dissemination. The approach aims for the exploitation of event
semantics to optimize event channels individually. We described the design of
the core publish/subscribe component of M2etis along with its processing model,
enabling for a channel-wise multidimensional optimization. The novelty of this
approach is the consideration of a wide range of semantic aspects for optimization of
the message dissemination. The proposed processing model supports in the current
version as many as seven dimensions for optimization, but there is still much work
required for the development of the optimization model, as this work is still in a
preliminary stage. However, the prototype implementation showed that the general
approach is feasible. Evaluations are planned to quantify the optimization effects
for typical application scenarios.

References

[AA06] Matthew S. Allen and Rame Alebouyeh. Chimera: A Library for Structured
Peer-to-peer Application Development. Technical report, University of Cali-
fornia, Santa Barbara, 2006.

[Ale01] Andrei Alexandrescu. Modern C++ Design Generic Programming and Desgin
Patterns Applied. Addison Wesley, 2001.

[BDL+08] Ashwin Bharambe, John R. Douceur, Jacob R. Lorch, Thomas Moscibroda,
Jeffrey Pang, Srinivasan Seshan, and Xinyu Zhuang. Donnybrook: Enabling
Large-Scale, High-Speed, Peer-to-Peer Games. SIGCOMM Comput. Commun.
Rev. (CCR), 38(4):389–400, 2008.

[BHK07] Ingmar Baumgart, Bernhard Heep, and Stephan Krause. OverSim: A Flexible
Overlay Network Simulation Framework. In Proceedings of 10th IEEE Global
Internet Symposium (GI ’07), Anchorage, AK, USA, pages 79–84, May 2007.

[BPS06] Ashwin Bharambe, Jeffrey Pang, and Srinivasan Seshan. Colyseus: A Dis-
tributed Architecture for Online Multiplayer Games. In 3rd Symposium on
Networked Systems Design & Implementation (NSDI), pages 155–168, Berke-
ley, CA, USA, 2006. USENIX Association.

[CDKR02] M. Castro, P. Druschel, A. M. Kermarrec, and A. I. T. Rowstron. Scribe:
a large-scale and decentralized application-level multicast infrastructure. Se-
lected Areas in Communications, IEEE Journal on, 20(8):1489–1499, 2002.

[DZD+03] Frank Dabek, Ben Zhao, Peter Druschel, John Kubiatowicz, and Ion Stoica.
Towards a Common API for Structured Peer-to-Peer Overlays. In Peer-to-
Peer Systems II, volume 2735 of Lecture Notes in Computer Science, pages
33–44–44. Springer Berlin / Heidelberg, 2003.

[FDI+10] Thomas Fischer, Michael Daum, Florian Irmert, Neumann Christoph P.,
and Richard Lenz. Exploitation of Event-Semantics for Distributed Pub-
lish/Subscribe Systems in Massively Multiuser Virtual Environments. In Pro-
ceedings of the 2010 international Symposium on Database Engineering & Ap-
plications (IDEAS ’10), Montreal, QC, Canada, 2010.

[Fer08] Stefano Ferretti. A Synchronization Protocol For Supporting Peer-to-Peer
Multiplayer Online Games in Overlay Networks. In 2nd International Con-
ference on Distributed Event-Based Systems (DEBS), pages 83–94, New York,
NY, USA, 2008. ACM.

[FL10] Thomas Fischer and Richard Lenz. Event semantics in event dissemination ar-
chitectures for massive multiuser virtual environments. In DEBS ’10: Proceed-
ings of the Fourth ACM International Conference on Distributed Event-Based
Systems, pages 93–94, New York, NY, USA, 2010. ACM.

[HCC06] Shun-Yun Hu, Jui-Fa Chen, and Tsu-Han Chen. VON: A Scalable Peer-to-
Peer Network for Virtual Environments. IEEE Network, 20(4):22–31, July
2006.

[SZ99] Sandeep Singhal and Michael Zyda. Networked Virtual Environments: Design
and Implementation. Addison-Wesley Professional, New York, NY, USA, 1999.

[ZKD08] Kaiwen Zhang, Bettina Kemme, and Alexandre Denault. Persistence in Mas-
sively Multiplayer Online Games. In 7th ACM SIGCOMM Workshop on Net-
work and System Support for Games (NetGames), pages 53–58, New York,
NY, USA, 2008. ACM.

