
Hydra Version Control System

Christoph P. Neumann, Scott A. Hady, Richard Lenz
Computer Science 6 (Data Management)

Friedrich-Alexander University, Erlangen, Germany
christoph.neumann@cs.fau.de

Abstract—The Hydra project offers version control
for distributed case files in α-Flow. Available version
control systems lack support for independent version-
ing of multiple logical units within a single repository
each with its own version history and head. Our use
case also requires mechanisms for labeling versions
by their validity and for validity-based navigational
access. Hydra is a multi-module and validity-aware
version control system.

Keywords-Versioning, Multi-Module, Case Files,
Valid Paths

I. Introduction & Background

The research project α-Flow (cf. [1], [2]) provides an
approach to distributed electronic case files, called α-
Docs. α-Docs are distributed by storing a local copy
for different cooperating parties and by synchronizing
updates and extensions among these copies (cf. [3]). The
α-Doc contains its own execution environment (cf. [4]);
its subsystem implementations must be as small as pos-
sible. The motivation for α-Docs is not important in this
context. From the perspective of version control systems
(VCS), the α-Doc contains a repository that is structured
into data modules, so called α-Card units. Each data
module, i.e. each α-Card unit, is an independent set of
hierarchically structured files.

Hydra provides embedded versioning for the α-Flow
engine within an α-Doc. Hydra has been implemented
as an autonomous component that can also be used
by a command-line interface as a stand-alone VCS. The
unique functional features of Hydra, 1) multi-module
support and 2) validity-awareness, are derived from our
use case, yet, the reasoning is of general concern.

II. Objectives

Healthcare processes are paper-based and there exist
logical units (LU) of paper artifacts. Each such set ex-
hibits an owner who is at least the contact person or who
even takes legal responsibility. In an inter-institutional
medical process, several LUs constitute the patient’s
case file. Each LU can be considered as a kind of data
module. In an electronic document analogon, the version
history of each LU must be available independently
for data provenance purposes. Thus, each data module
requires its independent VCS history, however, the overall

team progress, i.e. data production over all data mod-
ules, must also remain track-able. This is basically the
same situation as in parallel software development with
conflicting updates (on medical content files instead of
source code files) and with grouping artifacts via LUs.
The ‘LU’ is a unified term for ‘data module’ or ‘software
module’.

The Hydra objective is to provide a generic VCS

concept for (1) managing multiple LUs within a single
repository. A LU is defined as an arbitrary set of hi-
erarchically structured files. Within a single repository,
both (i) an independent version history, navigation, and
check-out head must be kept for each LU, and (ii) a
common version state over all LUs must be provided
for module-interdependency maintenance. The second
Hydra objective is to allow for (2) labelling versions by
a valid/invalid flag and to enable validity-based version
navigation. This means to provide both (i) a system
path navigation with any and all version states as it is
provided by common VCS navigation and (ii) a valid path
navigation that operates only on all valid versions.

Validity-aware version navigation is important in
healthcare because in inter-institutional environments
physicians are willing to provide to their peers prelim-
inary information. Preliminary versions are invalid in
terms of “not signed off” and their content should only
be consumed if treated with discreet caution. Validity
can imply acceptability instead of formal correctness.

The validity facilities of Hydra are also required by
the α-Flow protocol for synchronizing distributed α-Doc
nodes (cf. [3]). Hydra facilitates the protocol implemen-
tation: in case of global conflicts the conflicting versions
can simply be marked as invalid. The invalidated ver-
sions are required for reconciliation, for which they re-
main accessible by Hydra’s system path navigation. Yet,
until the conflict is reconciled, the valid path provides
the team members with access to the latest globally
valid, i.e. conflict free, version.

III. Methods

The Hydra versioning is inspired by Git (e.g. [5]) and
its object model1. Hydra also adopts full copy storage

1e.g. http://eagain.net/articles/git-for-computer-scientists

buettner
Schreibmaschinentext
Copyright by IEEE. DOI: 10.1109/XXXXXXXXX The original publication is available at http://ieeexplore.ieee.org/xpls/abs_all.XXXXXXXXXXXx 



and content-addressable storage via hashing. Further
versioning approaches such as SCCS, RCS, CVS, SVN,
and Mercurial had been evaluated; a survey can be
gained by Mukherjee in [6].

Validity is highly related to visibility. Common
databases apply “validity-first” based on their well-
known ACID2 properties. Validity implies visibility: new
data can only be made visible by a commit if the changes
are valid by not failing any constraints or assertions.
Decoupling validity and visibility in databases had been
subject to database conversions by Kirsche (e.g. [7]).
Common VCS apply “visibility-only”, new data is made
visible without a notion of validity. If invalid versions
need to be avoided then they must not be checked in.
Branching support in VCS allows to separate alternate
variants of a common ancestor3. Branches are reused for
separating different scopes with different consensus on
their validity criteria. The problem remains the same:
there is still no way to articulate whether a branch check-
in matches the agreed upon criteria or not. Validity
assertion relies on user-applied constraints and checks. In
contrast, a validity-aware VCS needs to provide two levels
of visibility based on validity differentiation. In combina-
tion with branching, different validity levels are possible.
Integrating validity-awareness into the VCS layer has the
potential to ease the implementation of a gated check-in
build process in which check-ins are only made publicly
visible if they pass automated code checks.

Support for multi-moduled versioning is required in
any modular data architecture. A first alternative would
be to manage modules by subdirectories. It mingles
their version history. Updating several modules to the
head version but letting other modules remain in a
concerted version state becomes cumbersome and re-
quires user discipline. A second alternative would be
to separate modules into distinct repositories. Then,
supporting a superproject repository requires mecha-
nisms to reference distinct external repositories and to
virtually merge them into a single working space. The
distinct-repositories-alternative encumbers restructuring
between the modules and interrupts version history at
relocations. It does not provide a module-comprehensive
version state. In contrast, a multi-module VCS needs
to provide three levels of versioning granularity: the
artifact, the logical unit, and the repository.

IV. Result

Hydra extends the Git object model. The original
model consists of the class Object with subtypes Commit,

2Atomicity, Consistency, Isolation, Durability
3Their exists a debate (cf. [8]) whether versions and variants

are synonymous or orthogonal concepts. We consider the 4Vs
(versions, variants, visibility, and validity) as orthogonal.

Tree, and Blob as well as Reference as a named rela-
tionship. Trees and blobs form a hierarchical structure;
trees have reflexive parent associations. Commits link
to multiple trees; additionaly, commits have reflexive
previous associations.
We reimplemented the versioning object model in

Java. Then we refined the Commit into subtypes Logi-
calUnit and Stage. The stage reference LUs, each with
an arbitrary state, thus, the stage manages the module-
interdependency and represents concerted superproject
progress. Validity tracking is implemented by adding a
second reflexive validPrevious association between Com-
mit classes. A detailed Hydra description is given in [9]
with all the subtle implications.

Hydra is available as open-source software. Its exe-
cutable size is 213 kb instead of Git’s 19MB. In a stress
test with 2,874 files comprising 983MB of mixed binary
and text documents, our NIO-based Zip-compressing
Java implementation is 2.9 times slower than zlib-
compressing C/C++-based Git; our repository is with
173MB slightly smaller than Git’s 187MB.

References

[1] C. P. Neumann and R. Lenz,“The alpha-Flow Use-Case of
Breast Cancer Treatment – Modeling Inter-Institutional
Healthcare Workflows by Active Documents,” in Proc of
the 8th Int’l Workshop on Agent-based Computing for
Enterprise Collaboration (ACEC), Jun. 2010.

[2] C. P. Neumann, P. K. Schwab, A. M. Wahl, and R. Lenz,
“alpha-Adaptive: Evolutionary Workflow Metadata in
Distributed Document-Oriented Process Management,”
in Proc of the 4th Int’l Workshop on Process-oriented
Information Systems in Healthcare, Aug. 2011.

[3] A. M. Wahl and C. P. Neumann, “alpha-OffSync:
An Offline-Capable Synchronization Approach for Dis-
tributed Document-Oriented Process Management in
Healthcare,” in Lecture Notes in Informatics: Sem. 11,
L. Porada, Ed. GI, Mar. 2012, accepted for publication.

[4] A. Todorova and C. P. Neumann, “alpha-Props: A Rule-
Based Approach to ‘Active Properties’ for Document-
Oriented Process Support in Inter-Institutional Environ-
ments,” in Lecture Notes in Informatics: Sem. 10, L. Po-
rada, Ed. GI, Mar. 2011.

[5] J. Loeliger, Version Control with Git. O’Reilly, 2009.

[6] P. Mukherjee, “A Fully Decentralized, Peer-to-Peer Ver-
sion Control System,”Ph.D. dissertation, Technische Uni-
versität Darmstadt, 2005.

[7] T. Kirsche, R. Lenz, T. Ruf, and H. Wedekind, “Coop-
erative problem solving using database conversations,” in
Proc of the 10th Int’l Conf on Data Engineering. IEEE,
1994, pp. 134–143.

[8] H. Wedekind, “Are the terms “version” and “variant”
orthogonal to one another?” SIGMOD Rec., vol. 23, pp.
3–7, December 1994.

[9] S. A. Hady, “alpha-VVS: An integrated Version Control
System as a Component of Process Support based on
Active Documents,”Master’s thesis, Friedrich-Alexander-
Universität Erlangen-Nürnberg, 2011.




