
A Benchmark for Multidimensional Statistical
Data

Philipp Baumgärtel?, Gregor Endler, and Richard Lenz

Institute of Computer Science 6,
University of Erlangen-Nuremberg

{philipp.baumgaertel,gregor.endler,richard.lenz}@fau.de

Abstract. ProHTA (Prospective Health Technology Assessment) is a
simulation project that aims at estimating the outcome of new medical
innovations at an early stage. To this end, hybrid and modular simula-
tions are employed. For this large scale simulation project, efficient man-
agement of multidimensional statistical data is important. Therefore, we
propose a benchmark to evaluate query processing of this kind of data
in relational and non-relational databases. We compare our benchmark
with existing approaches and point out differences. This paper presents a
mapping to a flexible relational model, JSON documents and RDF. The
queries defined for our benchmark are mapped to SQL, SPARQL, the
MongoDB query language and MapReduce. Using our benchmark, we
evaluate these different systems and discuss differences between them.

1 Introduction

ProHTA (Prospective Health Technology Assessment) is a large scale simula-
tion project within the Cluster of Excellence for Medical Technology – Medi-
cal Valley European Metropolitan Region Nuremberg (EMN).The objective of
this interdisciplinary research project is to study the effects of new innovative
medical technologies at a very early stage [7]. At the core of the project is an
incrementally growing set of healthcare simulation modules, which are config-
ured and calibrated with data from various sources. Typical data sources are
multidimensional statistical data, like cancer registries (e.g. SEER1), population
statistics or geographical databases. Not all data sources are initially known,
though. Moreover, adding new dimensions to a multidimensional classification
is common.

All these data are collected and stored in a central ProHTA database, which
is required to support uncertainty management, availability and performance
[1]. Consequently, the ProHTA database must have a generic general purpose
database schema which allows deferred semantic annotations and incremental
growth.

? On behalf of the ProHTA Research Group
1 http://seer.cancer.gov/

buettner
Schreibmaschinentext

buettner
Schreibmaschinentext
The original publication is available at www.springerlink.com (10.1007/978-3-642-40683-6_27)

buettner
Schreibmaschinentext

buettner
Schreibmaschinentext

buettner
Schreibmaschinentext

buettner
Schreibmaschinentext

2 A Benchmark for Multidimensional Statistical Data

A straight forward idea to store heterogeneous continuously evolving data
sets with varying semantics is to use RDF triplestores. Arbitrary types of in-
formation can be expressed through sets of RDF-triples, which simply represent
statements of the form subject-predicate-object. In a first prototype we use the
RDF triplestore Jena, which is flexible enough to store an arbitrary number
of classifications per fact [1]. However, there are many other options to store
continuously growing data sets in a generic database. In order to compare the
performance of these very different approaches for this problem we developed a
benchmark for multidimensional statistical data.

One of the alternatives to RDF is the relational EAV (Entity-Attribute-
Value) approach [11], which stores arbitrary attributes for each entity in RDF-
like triples. Other possible solutions are document stores like MongoDB and
CouchDB. These systems allow for storing arbitrary JSON documents and query-
ing them with system specific query languages or MapReduce [6]. Another al-
ternative are XML databases like BaseX. XML and document stores do not
require a schema to be known upfront and entities may contain lists of arbitrary
attributes.

We propose a benchmark to compare the alternatives of storing multidimen-
sional data with an arbitrary number of dimensions per fact. To create this
benchmark we used Jain’s methodology [9]. We present a conceptual model and
queries that are based on the requirements of the ProHTA simulation project
and map these to different data management systems. We exemplify our bench-
mark by evaluating PostgreSQL, SQLite, MongoDB and Jena. We chose Jena
because our current solution already uses it as data management system. Post-
greSQL and SQLite were chosen arbitrarily and we decided to use MongoDB
because of it’s interesting MongoDB query language and it’s MapReduce ability.
So far, we have evaluated the MapReduce approach on a single processor only,
in order to have a fair comparison with other non-parallel solutions. However,
note that the true strength of MapReduce only lies in parallel execution, which
is not taken into account in this paper. Commercial systems were excluded to
be able to publish our results without restrictions.

In Sect. 2, we discuss related work. Then, we define our benchmark in Sect. 3.
Sect. 4 and Sect. 5 present the mapping of the conceptual model and the queries
to the specific systems. We evaluate the systems using our benchmark in Sect. 6
and conclude with a short summary and a perspective on future work.

2 Related Work

There are many existing approaches to evaluate data warehouse solutions. One
of the best known is the TPC-H2, which measures the performance for a given
data warehouse schema. Another approach is the data warehouse benchmark by
Darmont et. al. [5], which is able to generate arbitrary data warehouse schemata.
Both approaches rely on schemata with a fixed number of dimensions. Therefore,
these solutions are not suitable for the data management problem in ProHTA.

2 http://www.tpc.org/tpch/

A Benchmark for Multidimensional Statistical Data 3

There are also approaches to evaluate NoSQL systems. The YCSB (Yahoo!
Cloud Serving Benchmark) [3] evaluated CRUD (Create, Read, Update, Delete)
operations for distributed data management systems. Pavlo et al. [12] compared
filter, aggregation and join operations for relational and non-relational systems.
They mapped their queries to MapReduce and SQL. Floratou et al. [8] utilized
the YCSB to compare a distributed relational DBMS to MongoDB. Additionally,
they compared the relational DBMS to Hive3 using TPC-H. Tudorica and Bucur
[14] evaluated the read and write performance of various NoSQL systems and
compared the features of these systems. Cudre-Mauroux et al. [4] evaluated
SciDB and MySQL for scientific applications by creating a set of 9 scientific
queries based on astronomy workloads.

All of these approaches are not suitable for dynamically evolving statistical
databases, as they do not evaluate generic multidimensional schemata. Addi-
tionally, some of these benchmarks only evaluate read and write operations. For
ProHTA, we need to evaluate approaches for managing statistical data cubes
with an arbitrary number of dimensions. Stonebraker et al. [13] argue that for
each problem domain, a specialized solution performs best. They prove their
point by evaluating different systems for scientific applications, data warehous-
ing and data stream processing with application specific workloads. Therefore,
we have developed a new benchmark as no existing benchmark covers our specific
problem domain.

3 Definition of the Benchmark

In this section, we define the conceptual model, exemplary data, and queries
of our benchmark. The data and queries are based on the requirements of the
ProHTA simulation project.

3.1 Conceptual Model

This model is a simplified version of the actual ProHTA data model for heteroge-
neous multidimensional statistical data [1]. Each fact is a tuple consisting of an
identifier, the name of a data cube, a numerical value and a set of classifications.

facti = (idi, cube, valuei, {classificationi,1, classificationi,2, . . . }) (1)

We do not support hierarchical classifications for the benchmark, as this is of no
importance for performance evaluations. Each classification is a tuple consisting
of a number representing the dimension and a numerical value that classifies the
fact in this dimension.

classificationi,j = (dimensioni,j , valuei,j) (2)

We use data cubes with d dimensions and n possible classification values per
dimension as test data. Each data cube is dense and contains nd facts. Dense
3 http://hive.apache.org/

4 A Benchmark for Multidimensional Statistical Data

data cubes are common for multidimensional statistical data in the ProHTA
setting. Each fact contains a random value uniformly sampled from the interval
[0, 1].

3.2 Query Definition

The queries are based on OLAP operators and typical queries from ProHTA
simulations. We assume a data cube with d dimensions 0, 1, . . . , d − 1 and n
classification values 0, 1, . . . , n− 1 in each dimension.
Insert measures the time to insert nd facts.
Dice queries all facts with a value ≤ bn/2c in each classification. That represents
a selectivity of approximately 50% for each dimension, which is common for
queries in ProHTA.
Roll Up groups the facts by the first max(bd/2c, 1) dimensions and calculates
the sum of the facts per group.
With Add Dimension the user can extend the classification scheme on demand.
This is required for heterogeneous multidimensional data, as we don’t know the
classification scheme in advance. For the benchmark query, we add a classification
with the value 0 and the dimension d to each fact.
Cube Join correlates the facts from data cubes c1 and c2 with nd facts in each
cube. For each fact i1 from c1 we search for the fact i2 from c2 with the same
classifications. The resulting fact i′ has the same classifications as i1 and i2. The
value of fact i1 is contained in i′ as leftvaluei′ and the value of the fact i2 is
contained in i′ as rightvaluei′ . The scheme of the resulting facts in the cube c1,2
is:

joinedfacti′ = (idi′ , c1,2, leftvaluei′ , rightvaluei′ , {classificationi′,1, . . . }) (3)

The Cube Join can correlate facts from different sources to either compare them
or to enrich the facts from one source with information from another source.

4 Mapping

In this section, we present a mapping from our conceptual model (Sect. 3.1) to
the evaluated systems.

4.1 Relational

The relational schema is based on the EAV approach:

fact (id, value, cube)

classification (id, fact_id[fact], value, dimension)

We evaluated multiple alternatives to create indexes for this mapping. We
created indexes for the columns id (for both relations), cube, factid and for the
combination of the columns (value, dimension, factid). These indexes showed
the best performance.

A Benchmark for Multidimensional Statistical Data 5

Composite types and arrays are a PostgreSQL-specific alternative to the EAV
approach. The classification can be modelled as a composite type and an array
of classifications can be stored for each fact. However, this is not suitable for our
problem as PostgreSQL does not support searching the content of arrays4.

Additionally, we evaluated a denormalized version of this mapping to be able
to compare the performance to an efficient ROLAP schema. The denormalized
solution requires only one table and contains a separate column for each dimen-
sion. Despite being not flexible enough for statistical simulation data, we include
this solution in our benchmark as baseline.

4.2 Document Store

A document store offers two alternatives for mapping our conceptual model
to JSON documents. We can either store facts and classifications in separate
documents or we can store the classifications as sub-documents. We decided to
use the sub-document approach despite it’s redundancy. That allows us to take
advantage of the MongoDB query language, as this query language does not
support joining documents.

As there is no standard schema definition language for JSON documents, we
give an example for d = 2:

{id : 1,

value: 0.5,

cube: "Test",

classifications : [

{dimension : 0, value : 0},

{dimension : 1, value : 0}]}

As MongoDB provides indexes, we evaluated different alternatives and de-
cided to create indexes on cube and
(classifications.value, classifications.dimension).
For evaluating MapReduce with MongoDB, we did not create any indexes, as
MapReduce is not able to utilize them.

4.3 RDF

The mapping to RDF is similar to the document store mapping. However, Jena
does not support custom indexes. Each fact is linked to an arbitrary number of
classifications. We present an exemplary fact for RDF in Turtle5 notation for
d = 2.

:f1 a :Fact ;

:value 0.5 ;

:cube "Test" ;

:classification [a :Classification; :dimension 0; :value 0] ;

:classification [a :Classification; :dimension 1; :value 0] .

4 http://www.postgresql.org/docs/9.1/static/arrays.html
5 http://www.w3.org/TR/turtle/

6 A Benchmark for Multidimensional Statistical Data

5 Query Mapping

In this section, we present a translation of exemplary most interesting queries
from Sect. 3.2 for each system. Additionally, we discuss how the query complexity
depends on the number of dimensions d. We assume n = 10 and d = 2 for all
exemplary queries except for Roll Up with d = 4.

5.1 Relational

For example, the query for Cube Join is:

SELECT lf.value AS leftvalue, rf.value AS rightvalue,

lc0.value AS dimvalue0 , lc1.value AS dimvalue1

FROM fact lf, fact rf, classification lc0, classification rc0,

classification lc1, classification rc1

WHERE lf.cube = ’Test’ AND rf.cube = ’Test2’

AND lc0.factid = lf.id AND rc0.factid = rf.id

AND lc0.dimension = 0 AND rc0.dimension = 0

AND lc0.value = rc0.value

AND lc1.factid = lf.id AND rc1.factid = rf.id

AND lc1.dimension = 1 AND rc1.dimension = 1

AND lc1.value = rc1.value;

Here, we join the facts lf and rf. As d = 2 for this example, we have to compare
the classifications lc0 und lc1 of the fact lf with the classifications rc0 and
rc1 of the fact rf. Therefore, we need 2d + 1 joins and 5d + 2 filter conditions.

Dice requires d Joins and 3d + 1 filter conditions. Roll Up requires d Joins
and 2d+1 filter conditions. The complexity of inserting additional classifications
(Add Dimension) does not depend on d.

For the denormalized relational solution, only the number of filter conditions
for Dice and Cube Join depends on d and only Cube Join requires a join.

5.2 MapReduce

The MapReduce solution for Roll Up in pseudocode is :

map(fact):

if fact.cube == ’Test’:

key_classes = []

for classification in fact.classifications:

if classification[’dimension’] in [0,1]:

key_classes.append(classification)

emit({classifications : key_classes, cube: fact.cube},fact)

reduce(key, facts):

result = {cube : key.cube, value: 0,

classifications: key.classifications};

for fact in facts:

result.value += fact.value;

return result;

A Benchmark for Multidimensional Statistical Data 7

For Roll Up, we generate the key in the map function to group the facts
from the first classifications with dimension ≤ max(bd/2c, 1). Then, the reduce
function calculates the sum of the facts. We use the map function to filter the
facts for Dice and to add a classification to each fact for Add Dimension.
For Cube Join, we use all classifications of a fact as key in the map function.
Therefore, the reduce function gets two fitting facts – one from each cube – and
produces the joined fact. This is known as the Standard Repartition Join [2].
The complexity of the MapReduce queries does not depend on d except for the
number of filter conditions for Dice and the key construction of Roll Up.

5.3 MongoDB Query Language

Besides MapReduce, MongoDB offers a custom query language6. However, this
language does not support joins and advanced aggregation features. Therefore,
Cube Join and Roll Up can not be mapped to the MongoDB query language.
However, the Aggregation Framework7 extends the MongoDB query language.
This enables us to perform the Cube Join and Roll Up queries.

Dice is mapped using the filter functionality of the MongoDB query lan-
guage:

{’$and’: [{’cube’: ’Test’},

{’classifications’: {’$elemMatch’:

{’dimension’: 0, ’value’: {’$lte’: 5}}}},

{’classifications’: {’$elemMatch’:

{’dimension’: 1, ’value’: {’$lte’: 5}}}}

]}

The $elemMatch operator enables conditions for subdocuments. The number
of conditions in this query is d + 1.

Roll Up is mapped using the Aggregation Framework, which uses pipelining
of operators:

{’$match’ : {’cube’ : ’Test’}},

{’$unwind’ : ’$classifications’},

{’$match’ : { ’classifications.dimension’ :

{ ’$in’ : [0,1]}}},

{’$group’ : { ’_id’ : ’$_id’, ’classifications’ :

{’$push’ : ’$classifications’},

’value’ : { ’$first’ : ’$value’}}},

{’$group’ : { ’_id’ : "$classifications",

’value’ : { ’$sum’ : ’$value’}}},

{’$project’ : {’value’ : 1, ’classifications’ : ’$_id’}}

Here, we use $match to find the facts of the desired cube. Then, we split up the
array containing the classifying subdocuments using $unwind. This produces
copies of the fact document for each element of the array. These documents

6 http://www.mongodb.org/display/DOCS/Querying
7 http://docs.mongodb.org/manual/applications/aggregation/

8 A Benchmark for Multidimensional Statistical Data

contain only one classification instead of the classification array. Then, $match
finds the classifications to group by. After that, $group reverses the $unwind

operation. Now, each document contains only the classifications we want to
group by. The final $group is the actual aggregation and $project produces the
right output format. The number of classifications to group by is max(bd/2c, 1).

Add Dimension filters the facts and adds a classification with $push. The
complexity of Add Dimension does not depend on d.

For Cube Join, we utilize the Aggregation Framework again:

{’$match’ : {’$or’ : [{"cube" : ’Test’},

{"cube" : ’Test2’}]}},

{’$project’ : {’classifications’ : 1,

’leftvalue’ :

{’$cond’ : [{’$eq’ : [’$cube’, ’Test’]}, ’$value’, 0]},

’rightvalue’ :

{’$cond’ : [{’$eq’ : [’$cube’, ’Test2’]}, ’$value’, 0]}}},

{’$group’ : {’_id’ : "$classifications",

’leftvalue’ : {’$sum’ : ’$leftvalue’},

’rightvalue’ : {’$sum’ : ’$rightvalue’}}},

{’$project’ : {’leftvalue’ : 1, ’rightvalue’ : 1,

’classifications’ : ’$_id’}}

Conditional values ($cond) split up the value attributes of facts and store them
in new attributes leftvalue and rightvalue. Then, we group by all classifica-
tions to match facts from one cube to the corresponding facts from the other
cube. Therefore, each group contains two documents. Then, we can sum up the
leftvalue and rightvalue attributes, because they either contain the desired
value or 0. Again, the complexity does not depend on d.

5.4 RDF

Since version 1.1, SPARQL has supported aggregation and updates. Therefore,
we are able to map all queries to SPARQL.

Dice needs d FILTER operators to find the desired facts. The number of
triples in this query is 3d + 2:

SELECT ?fact ?value ?dimvalue0 ?dimvalue1 WHERE {

?fact cube:value ?value ; cube:cube "Test" .

?fact cube:classification [:dimension 0; :value ?dimvalue0] .

FILTER(?dimvalue0 <= 5)

?fact cube:classification [:dimension 1; :value ?dimvalue1] .

FILTER(?dimvalue1 <= 5)

}

Roll Up uses GROUP BY to aggregate values and needs 3d + 2 triples for
the query. For Add Dimension, the INSERT statement generates and stores
4 additional triples for each fact in the respective cube. Finally, Cube Join
requires 6d + 4 triples in the query.

A Benchmark for Multidimensional Statistical Data 9

6 Evaluation

In this section, we present the results of our evaluation for PostgreSQL, SQLite,
MongoDB and Jena. For MongoDB, we evaluated it’s query language as well as
MapReduce.

A Python implementation of our benchmarking framework is available for
download on our Homepage8. Data sets and queries are generated automatically
for a desired problem size. As this framework is based on a simple data model and
well defined queries, it can be extended to evaluate other solutions. Additionally,
unit tests guarantee that all evaluated solutions adhere to the defined semantics.

6.1 Hardware and Software Configuration

We used a quad-core computer9 with a 2.5 inch hard drive10 and two 4 GB
DDR3 RAM modules with 1333 MHz for the evaluation. The operating system
was Ubuntu 12.04 64 bit with the OpenJDK 64 bit server VM (Java version
1.6.0). We evaluated MongoDB version 2.2.0, PostgreSQL version 9.1.5, SQLite
version 3.7.9 and Jena Fuseki version 0.2.3 with the TDB back end. We used
64 bit versions of the systems if they were available and did not modify the
standard configuration. As journaling is activated in the standard configuration
of MongoDB, all systems guarantee the durability of stored data.

6.2 Evaluation Results

We evaluated data cubes with sizes nd ranging from 103 to 106. These cube sizes
cover most of the data sets in ProHTA. For Insert, we measured the time to
store a cube of the desired size in an empty database. We executed all other
queries on a database containing two cubes of the desired size. SQLite does not
start the query execution until the results are fetched. Therefore, we measured
the time for executing the query and returning the results.

We ran each test 25 times (if possible) and compared the results to rule out
caching effects. Tests with a long run time were executed only three times. We
compared the results and used the first one for the evaluation if there were no
significant differences.

With PostgreSQL, subsequent test runs showed significantly different results.
This can be attributed to optimizations that were employed after a certain num-
ber of queries. We eliminated this behavior by running ANALYZE before each
query. That way, PostgreSQL employed the optimizations for every query. We
did not include the time for running ANALYZE in the results. This is valid, as
we assume that statistical data for optimizations exists in our data management
system.

8 http://www6.cs.fau.de/pb/
9 Intel(R) Core(TM) i5-2540M CPU @ 2.60GHz

10 Seagate Momentus / max.: 7.200 rpm / buffer: 16 MB / bus: S-ATA II (S-ATA 300)

10 A Benchmark for Multidimensional Statistical Data

Query
Dimensions

M
o
n
g
o
D

B
Q

L
M

a
p
R

ed
u
ce

P
o
stg

reS
Q

L
S
Q

L
ite

J
en

a
P

o
stg

reS
Q

L
1
T

S
Q

L
ite

1
T

Insert

3
0
.0
1
1

(0
.0

0
3
)

S
ee

1
.8

3
0

(0
.0

2
4
)

0
.2

9
1

(0
.0

1
6
)

1
.8

1
8

(0
.1

2
6
)

0
.5

4
0

(0
.0

1
0
)

0
.1

6
5

(0
.0

2
2
)

4
0
.2
9
0

(0
.0

6
7
)

M
o
n
g
o
D

B
Q

L
2
2
.7

1
(0

.2
5
5
)

1
.2

1
3

(0
.1

0
5
)

1
8
.8

6
(0

.9
1
0
)

5
.3

2
3

(0
.0

7
5
)

0
.2

4
7

(0
.0

5
1
)

5
1
1
.8

6
(3

.1
6
4
)

2
7
6
.3

(1
.8

8
7
)

5
.5
1
5

(1
.1

1
8
)

2
6
4
.8

5
3
.8

8
(0

.5
0
3
)

1
.1

0
3

(0
.0

2
0
)

6
2
1
5
.3

2
6
3
1

6
1
.8
0

8
1
9
3

5
1
0
.1

8
.6

7
6

Dice

3
0
.0
0
4

(2
.9

e-4
)

0
.0

4
4

(0
.0

0
8
)

0
.0

1
2

(0
.0

0
4
)

0
.0

1
0

(0
.0

0
3
)

0
.0

6
8

(0
.0

1
6
)

0
.0

0
3

(0
.0

0
1
)

8
.6

e-4
(4

.4
e-4

)
4

0
.0
4
8

(0
.0

0
6
)

0
.3

7
0

(0
.0

5
1
)

0
.0

7
2

(0
.0

0
3
)

0
.0

5
7

(0
.0

0
3
)

0
.5

2
8

(0
.0

0
9
)

0
.0

1
6

(0
.0

0
4
)

0
.0

0
7

(9
.8

e-5
)

5
0
.4
0
3

(0
.2

1
9
)

3
.6

5
2

(0
.0

5
0
)

0
.8

9
7

(0
.0

0
8
)

0
.6

9
9

(0
.0

0
5
)

5
.8

0
9

(0
.0

7
1
)

0
.0

7
4

(0
.0

0
4
)

0
.0

7
5

(3
.2

e-4
)

6
3
.2
0
2

(0
.3

7
0
)

3
7
.9

0
(0

.3
4
1
)

1
1
.8

6
(0

.1
3
3
)

8
.6

6
8

(0
.0

7
4
)

7
7
.0

1
(7

.1
0
3
)

0
.4

9
4

(0
.0

2
2
)

0
.8

0
3

(0
.0

0
4
)

Roll Up

3
0
.0

1
5

(0
.0

0
3
)

0
.0

6
0

(0
.0

0
8
)

0
.0

0
4

(0
.0

0
2
)

0
.0
0
3

(3
.0

e-5
)

0
.0

3
6

(0
.0

1
1
)

0
.0

0
2

(8
.7

e-4
)

0
.0

0
1

(6
.8

e-4
)

4
0
.1

8
8

(0
.0

0
5
)

0
.5

9
4

(0
.0

0
4
)

0
.0
4
1

(0
.0

0
4
)

0
.0

6
4

(3
.8

e-4
)

0
.4

3
3

(0
.0

1
0
)

0
.0

0
9

(0
.0

0
4
)

0
.0

1
5

(2
.8

e-4
)

5
0
.9

9
8

(0
.6

6
5
)

6
.1

5
4

(0
.0

9
6
)

0
.4
0
8

(0
.0

0
3
)

0
.8

6
0

(0
.0

0
3
)

4
.8

4
4

(0
.0

7
9
)

0
.0

5
0

(0
.0

0
4
)

0
.1

6
3

(5
.9

e-4
)

6
2
9
.8

6
(8

.6
2
9
)

6
2
.6

0
(0

.2
4
4
)

4
.2
2
7

(0
.2

8
3
)

1
7
.7

7
(0

.2
5
7
)

8
1
.8

0
(4

.8
2
4
)

0
.3

5
1

(0
.0

0
3
)

4
.7

4
9

(0
.0

2
7
)

Cube Join

3
0
.0
4
5

(0
.0

0
6
)

0
.1

9
9

(0
.0

2
4
)

0
.0
4
4

(0
.0

0
3
)

0
.2

2
0

(0
.0

0
7
)

1
5
.8

2
(0

.0
2
7
)

0
.0

1
6

(0
.0

0
5
)

0
.0

0
3

(5
.3

e-5
)

4
0
.4
2
5

(0
.0

0
7
)

2
.5

9
7

(0
.1

9
4
)

0
.5

0
2

(0
.0

0
8
)

2
4
.6

8
(0

.3
0
1
)

–
0
.1

0
5

(0
.0

0
6
)

0
.0

3
9

(0
.0

0
3
)

5
4
.5
7
0

(0
.0

7
1
)

1
3
.2

6
(0

.7
2
7
)

–
–

–
0
.9

4
0

(0
.0

4
0
)

0
.4

4
1

(8
.5

e-4
)

6
–

(D
o
c.

S
z.)

3
7
4
.6

–
–

–
1
0
.7

7
(0

.0
4
4
)

5
.2

4
7

(0
.0

3
1
)

Add Dim.

3
0
.1

8
0

(0
.0

6
6
)

0
.1

3
3

(0
.0

2
1
)

0
.0
4
3

(0
.0

0
9
)

0
.3

0
9

(0
.0

2
6
)

0
.3

9
1

(0
.0

1
5
)

0
.2

4
0

(0
.0

1
0
)

0
.1

6
0

(0
.0

0
8
)

4
2
.3

1
7

(0
.3

9
2
)

1
.3

6
5

(0
.2

4
7
)

0
.3
1
9

(0
.0

5
0
)

0
.9

9
0

(0
.2

8
8
)

0
.9

1
0

(0
.0

1
9
)

0
.4

0
5

(0
.0

1
8
)

0
.1

7
8

(0
.0

2
7
)

5
2
7
.9

6
(6

.6
6
7
)

1
3
.2

7
(3

.2
6
3
)

4
.4

3
6

(0
.2

1
1
)

3
.8
1
9

(0
.3

4
4
)

7
.0

2
3

(0
.7

3
4
)

1
.7

5
1

(0
.3

5
1
)

0
.1

9
0

(0
.0

2
6
)

6
2
8
0
.7

9
0
.4

2
4
6
.4

8
3
6
.0
4

2
7
0
.7

1
6
.9

8
(0

.6
1
9
)

0
.1

6
6

(0
.0

0
8
)

T
a
b
le

1
.

T
im

e
(s)

a
n
d

sta
n
d
a
rd

d
ev

ia
tio

n
fo

r
th

e
q
u
eries

A Benchmark for Multidimensional Statistical Data 11

 0

 10

 20

 30

 40

 50

 60

 70

 80

 4 5 6

ti
m

e
 (

s
)

dimensions

MongoDB QL
MapReduce
PostgreSQL

SQLite
Jena

(a) Dice

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 4 5 6

ti
m

e
 (

s
)

dimensions

MongoDB QL
MapReduce
PostgreSQL

SQLite
Jena

(b) Roll Up

 0

 50

 100

 150

 200

 250

 300

 350

 400

 3 4 5 6

ti
m

e
 (

s
)

dimensions

MongoDB QL
MapReduce
PostgreSQL

SQLite
Jena

(c) Cube Join

 0

 50

 100

 150

 200

 250

 300

 4 5 6

ti
m

e
 (

s
)

dimensions

MongoDB QL
MapReduce
PostgreSQL

SQLite
Jena

(d) Add Dimension

Fig. 1. Evaluation of the queries

Table 1 and Fig. 1 show the results of our evaluation. For each test run,
we present in Table 1 the average time (in seconds) and the standard devia-
tion if we were able to run the test 25 times. We aborted each query except
Insert aft 600 seconds (“–” in the table). “PostgreSQL 1T” and “SQLite 1T”
are the denormalized relational solutions. We did include these solutions in our
evaluation despite being not flexible enough to manage heterogeneous data. The
fastest solution for each problem size and query is printed in boldface (excluding
the denormalized solutions). As an overview, we depicted the results in Fig. 1.
Because of space limitations, we omitted Insert and for clarity reasons, we did
not plot the results for the denormalized relational solutions.

PostgreSQL performs the Cube Join very fast by using hash joins. However,
for larger cubes (d > 4) the available memory was not sufficient. Therefore,
PostgreSQL was not able to perform the Cube Join in less than 600 seconds.
MongoDB was not able to perform the Cube Join for d > 5. This was because
the Aggregation Framework stores all results in one single document and the
result exceeded the hard coded maximum document size (“– Doc. Sz.” in the
table). To be able to perform the cube join for d = 5, we increased the maximum
document size from 16MB to 256MB in the MongoDB code. However, we were
not able to increase this limit further because of integer overflows. For Jena, we
extended the Java heap space to 4GB to be able to evaluate Add Dimension
for d = 6.

12 A Benchmark for Multidimensional Statistical Data

In conclusion, MongoDB seems to be most suitable for managing simulation
data in ProHTA. The MongoDB query language is fast and MapReduce is the
only solution that allows for large Cube Joins. PostgreSQL is very fast for Roll
Up queries and for adding dimensions but is slow for Insert. Jena is too slow
and can not perform Cube Joins for cubes with more than 103 facts.

6.3 Evaluating a Prefilled Database

In this section, we evaluate the dependency between the performance and the
amount of data in the data management system. To this end, we evaluated Dice
for cubes with 104 facts for an empty database and for a database prefilled with
100 cubes containing 104 facts each. This amount of data is realistic for a large
healthcare simulation project.

Load 0 104 · 100

MongoDB QL 0.048 (0.006) 0.040 (0.007)

MapReduce 0.370 (0.051) 5.882 (0.054)

PostgreSQL 0.072 (0.003) 0.064 (0.005)

PostgreSQL 1T 0.016 (0.004) 0.016 (0.006)

SQLite 0.057 (0.003) 0.081 (0.004)

SQLite 1T 0.007 (9.8e-5) 0.018 (0.005)

Jena 0.528 (0.009) 0.595 (0.052)

Table 2. Time (s) and standard deviation of the dice query

Table 2 presents the results. The difference for the MongoDB query language
is within the limits of the error of measurement. However, MapReduce depends
heavily on the amount of data in the database. This is because MapReduce has to
process each document in the database. In MongoDB, MapReduce and the filter
from the MongoDB query language can be combined. That way, the amount of
data in the database does not influence the performance of MapReduce queries.
PostgreSQL showed no significant difference between the two experiments. Jena
and SQLite showed a small dependency on the amount of data in the database.
Therefore, the amount of data in the ProHTA simulation project does not influ-
ence whether or not the solutions are suitable.

7 Conclusions and Future Work

This paper proposed a benchmark to evaluate solutions for storing heteroge-
neous multidimensional statistical data. The benchmark is based on the data
management of a large scale healthcare simulation project. The data model in
this project is based on the EAV approach. As EAV is a widespread solution to
create generic data models [10], our benchmark is valid for a large number of
applications besides statistical data.

A Benchmark for Multidimensional Statistical Data 13

We simplified the data model to be able to map it easily to a large number
of different data management solutions. However, the simplified data model is
still close enough to the real model to be able to use the evaluated solutions in
the ProHTA project.

We created a set of well-defined queries, which can be mapped to various
query languages. These queries are based on realistic and typical queries from
healthcare simulations. The mapping of queries enables evaluating the expres-
siveness of the target query languages as well as their performance.

No clear winner has emerged from our evaluation. As expected, all solutions
were far slower than the denormalized relational approach. However, as a generic
data model is required, we can not rely on this solution. SQLite was even faster
than MongoDB for inserting the facts; PostgreSQL and Jena were very slow.
For Dice, the MongoDB query language was faster than the relational solutions
and more than 20 times faster than Jena. For Roll Up, PostgreSQL performed
fastest. Despite being slow, MapReduce was the only solution that was able to
perform the Cube Join for d > 4. For MapReduce, there was no need to create
indexes, therefore it performed AddDimension faster than the MongoDB query
language. Jena showed the slowest performance for each query and was not able
to perform the Cube Join for d > 3.

In future work, we need to evaluate other systems to be able to decide which
solution suits the ProHTA data management problem best. The dependency
between performance and amount of data in the database should be evaluated
more thoroughly. In addition to that, we need to evaluate how the queries can
be performed in parallel. This is because we did not utilize this strength of
MapReduce and MongoDB in our benchmark yet. Also, sparse data cubes with
a high number of dimensions need to be evaluated.

Using this benchmark, we can define a catalog of criteria to find the best sys-
tem for a wide range of data management problems with certain characteristics.
Additionally, we can evaluate optimization strategies for each solution.

Acknowledgements

This project is supported by the German Federal Ministry of Education and
Research (BMBF), project grant No. 13EX1013B.

References

1. Baumgärtel, P., Lenz, R.: Towards data and data quality management for large
scale healthcare simulations. In: Conchon, E., Correia, C., Fred, A., Gamboa, H.
(eds.) Proceedings of the International Conference on Health Informatics. pp. 275–
280. SciTePress - Science and Technology Publications (2012), iSBN: 978-989-8425-
88-1

2. Blanas, S., Patel, J.M., Ercegovac, V., Rao, J., Shekita, E.J., Tian, Y.: A compari-
son of join algorithms for log processing in mapreduce. In: Proceedings of the 2010
ACM SIGMOD International Conference on Management of data. pp. 975–986.
SIGMOD ’10, ACM, New York, NY, USA (2010)

14 A Benchmark for Multidimensional Statistical Data

3. Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking
cloud serving systems with ycsb. In: Proceedings of the 1st ACM symposium on
Cloud computing. pp. 143–154. SoCC ’10, ACM, New York, NY, USA (2010)

4. Cudre-Mauroux, P., Kimura, H., Lim, K.T., Rogers, J., Madden, S., Stonebraker,
M., Zdonik, S.B., Brown, P.G.: Ss-db: A standard science dbms benchmark (2012),
(submitted for publication)

5. Darmont, J., Bentayeb, F., Boussad, O.: Dweb: A data warehouse engineering
benchmark. In: Tjoa, A., Trujillo, J. (eds.) Data Warehousing and Knowledge
Discovery, Lecture Notes in Computer Science, vol. 3589, pp. 85–94. Springer Berlin
/ Heidelberg (2005), 10.1007/115468499

6. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters.
Commun. ACM 51(1), 107–113 (Jan 2008)

7. Djanatliev, A., Kolominsky-Rabas, P., Hofmann, B.M., Aisenbrey, A., German, R.:
Hybrid simulation approach for prospective assessment of mobile stroke units. In:
SIMULTECH 2012 - Proceedings of the 2nd International Conference on Simula-
tion and Modeling Methodologies, Technologies and Applications. pp. 357 – 366
(2012)

8. Floratou, A., Teletia, N., Dewitt, D.J., Patel, J.M., Zhang, D.: Can the elephants
handle the nosql onslaught? In: Proceedings of the VLDB Endowment. vol. Volume
5 (2012)

9. Jain, R.: The art of computer systems performance analysis. John Wiley & Sons,
Inc. (1991)

10. Lenz, R., Elstner, T., Siegele, H., Kuhn, K.A.: A practical approach to process sup-
port in health information systems. Journal of the American Medical Informatics
Association 9(6), 571–585 (2002)

11. Nadkarni, P.M., Marenco, L., Chen, R., Skoufos, E., Shepherd, G., Miller, P.: Or-
ganization of heterogeneous scientific data using the eav/cr representation. Journal
of the American Medical Informatics Association 6(6), 478–493 (1999)

12. Pavlo, A., Paulson, E., Rasin, A., Abadi, D.J., DeWitt, D.J., Madden, S., Stone-
braker, M.: A comparison of approaches to large-scale data analysis. In: Proceed-
ings of the 2009 ACM SIGMOD International Conference on Management of data.
pp. 165–178. SIGMOD ’09, ACM, New York, NY, USA (2009)

13. Stonebraker, M., Bear, C., Çetintemel, U., Cherniack, M., Ge, T., Hachem, N.,
Harizopoulos, S., Lifter, J., Rogers, J., Zdonik, S.: One size fits all? - part 2:
benchmarking results. In: Proceedings of the 3rd Conference on Innovative Data
Systems Research (CIDR) (2007)

14. Tudorica, B., Bucur, C.: A comparison between several nosql databases with com-
ments and notes. In: Roedunet International Conference (RoEduNet), 2011 10th.
pp. 1 –5 (june 2011)

