
A Query Language for Workflow Instance Data

Philipp Baumgärtel?, Johannes Tenschert, and Richard Lenz

Institute of Computer Science 6,
University of Erlangen-Nuremberg

{philipp.baumgaertel,johannes.tenschert,richard.lenz}@fau.de

Abstract. In our simulation project ProHTA (Prospective Health Tech-
nology Assessment), we want to estimate the outcome of new medical
innovations. To this end, we employ agent-based simulations that require
workflow definitions with associated data about workflow instances. For
example, to optimize the clinical pathways of patients with stroke we
need the time and associated costs of each step in the clinical pathway.
We adapt an existing conceptual model to store workflow definitions and
instance data in RDF. This paper presents a query language to aggregate
and query workflow instance data. That way, we support domain experts
in analyzing simulation input and output. We present a heuristic algo-
rithm for efficient query processing. Finally, we evaluate the performance
of our query processing algorithm and compare it to SPARQL.

1 Introduction

ProHTA (Prospective Health Technology Assessment) is a simulation project
aimed at estimating the potential of innovative healthcare technologies at a very
early stage. To this end, new types of hybrid and modular simulation systems are
employed to simulate the effects of new healthcare technologies [5]. For example,
one of our simulations concerns mobile stroke units [5]. For stroke, the time
between onset and treatment is crucial for the treatment process. Mobile stroke
units enable diagnosis and treatment of stroke patients on site, therefore reducing
the time between onset and treatment. Hence, in our simulation models, we pay
great attention to the diagnosis and treatment workflows of stroke patients and
the time of individual steps in these workflows.

Besides the problem of simulation modeling, simulation input data manage-
ment is an important concern [11]. Because medical and statistical simulation
data in our project stems from several heterogeneous sources, a generic and flex-
ible conceptual model is required. We developed a multidimensional conceptual
model using RDF (Resource Description Framework) to cope with the hetero-
geneity [2].

In our simulation project, we are already using workflow definitions in form
of activity diagrams [9] as a first step towards simulation models. Therefore, it is
natural to organize our simulation input data according to these workflows. To

? On behalf of the ProHTA Research Group

buettner
Schreibmaschinentext

buettner
Schreibmaschinentext

buettner
Schreibmaschinentext

buettner
Schreibmaschinentext

buettner
Schreibmaschinentext

buettner
Schreibmaschinentext
The original publication is available at www.springerlink.com (10.1007/978-3-319-01863-8_9)

buettner
Schreibmaschinentext

2 A Query Language for Workflow Instance Data

this end, activity diagrams need to be stored in the data management system.
Then, simulation input and output data can be stored and linked to the activity
diagrams.

Our simulation practitioners and domain experts want to query and analyze
data. However, it is hard for scientists to write non-trivial SQL or SPARQL
queries [10]. Therefore, we propose using a domain specific query language. In our
stroke example, the simulation estimates the time between onset and treatment
gained by implementing mobile stroke units. Then, the domain experts could
use a domain specific query language to compare the simulation outcomes of
different settings.

Together with our simulation experts, we identified several requirements for
such a domain specific query language:

1. Query aggregated data for a specific part of a workflow
2. Query data for individual steps of a workflow
3. Query aggregated data for the most probable paths through a workflow

In this paper, we present a conceptual model to organize data according to
workflow definitions. Additionally, we develop a domain specific query language
to query and analyze the data.

2 Conceptual Model

Dumas and Hofstede [7] evaluated UML activity diagrams as a specification
language for workflows. Despite some imprecise semantics, they satisfy all of our
requirements. As we are already using RDF to store multidimensional data [2],
we decided to store UML activity diagrams using RDF. Dolog’s OWL ontology
allows for storing UML state machines in RDF [6].As UML activity diagrams
can be mapped to UML state machines, we use a simplified version of Dolog’s
ontology.

The basic elements of activity diagrams are depicted in Fig. 1. There are
states and transitions, for example “A” and “C” are simple states. Transitions
are depicted as arrows. Additionally, there are initial and final states. Composite
states can be used to construct hierarchical structures and may contain parallel
regions. Branches like “B” can be used to indicate alternatives.

We decided to omit forks and joins because the well-formedness of diagrams
containing forks and joins is non-trivial [7]. However, parallel execution can still
be achieved without losing expressiveness by using parallel regions in composite
states. The execution of a composite state is complete when it reaches all final
states in the parallel regions of the composite state. A transition between a state
inside a composite state and a state on the outside interrupts the execution of
the composite state. For example, the transition between “B” and “C” interrupts
the execution of the composite state in Fig. 1.

We extended Dolog’s ontology with optional probabilities for outgoing tran-
sitions of branches. Additionally, we can store the time and different types of
costs of states and transitions. These costs consist of a name and a numerical
value. In addition to the workflow definition with aggregated data, we store data

A Query Language for Workflow Instance Data 3

Fig. 1. UML activity diagram

about workflow instances. For example, we store data about the treatment of a
patient. This fine-grained data can be used for query evaluation instead of the
preaggregated data stored alongside the workflow definition.

3 Workflow Query Language

In this section, we present the main features of the WQL (Workflow Query
Language). To this end, we introduce the ESTIMATE query type that can be
used to aggregate time and costs in workflow definitions. We provide a formal
definition of workflow data aggregation semantics online1. The scheme of an
ESTIMATE query is shown in listing 1.1. Paths with a denoted start and end
are examined in order to aggregate time and costs.

[CONTEXT <URI>]
ESTIMATE time, costs, probability, state, path
OF <workflow>

[FROM <start>] [TO <end>]
[USING INSTANCE named instance]
[USING INSTANCES named instances for average times]
[USING ALL INSTANCES]
[WITH { variables, times, decisions }]
[GROUPBY state, path]
[ORDERBY time, costs, probability ASC/DESC]

Listing 1.1. Scheme of an ESTIMATE query

To prevent the user from having to write the same prefix of URIs multiple times,
the CONTEXT statement allows an abbreviated form similar to ’PREFIX’ in
SPARQL. ESTIMATE queries allow multiple column definitions in the ESTI-
MATE clause, e.g. time and different types of costs. Also, states, paths and the
probability of paths can be queried if states or paths are part of the GROUP
BY clause. Then, GROUP BY works like its SQL counterpart.

The optional FROM and TO clauses specify the beginning and end of the
considered paths. Initial and final states of the examined workflow are the default
values for FROM and TO. States can be identified either by URI or by unique

1 http://www6.cs.fau.de/people/philipp/wql_semantics.pdf

4 A Query Language for Workflow Instance Data

names. The USING (ALL) INSTANCE(S) and WITH clauses specify workflow
instances as described in Sect. 2 for the aggregation of time and costs. The
ORDER BY statement triggers sorting of results with the desired sort order.

4 Query Processing

As the expressiveness of SPARQL is not sufficient, we cannot translate ESTI-
MATE queries to SPARQL. Therefore, we use SPARQL only to load data and
activity diagrams and provide a custom query processing algorithm. In this sec-
tion, we present the path-finding algorithm to process ESTIMATE queries. Since
loops and decisions can produce an infinite number of paths, finding all of them
is impossible. Hence we present a heuristic approach for finding the most likely
paths. First, we present the basic algorithm that is not able to handle parallel
sections. After that, we describe the extensions to support parallelism.

Since our path–finding algorithm is a heuristic, three parameters are pro-
vided to limit processing: the minimal probability of a path pmin, the maximal
number of results rmax, and the maximal number of states in a path nmax Algo-
rithm 1 shows a simplified version of our algorithm. In the following, we call the
transitions of the activity diagram edges. The function suitableEdges(state)
returns all outgoing transitions of a state excluding transitions to states with no
path to a final state and transitions excluded by conditions. Therefore, we need
to mark each state that reaches the end in advance.

Algorithm 1 Path-finding heuristic

List result, PriorityQueue pq
setCapacity(pq, rmax)
enqueue(pq, start, priority = 1)
while ¬empty(pq):

path = pop(pq)
edges = suitableEdges(last(path))
∀edge ∈ edges:

if length(path+ edge) > nmax ∨probability(path) ·probability(edge) < pmin:
continue

if reachEnd(path + edge):
append(result, path + edge)
setCapacity(pq, rmax- length(result))

else:
enqueue(pq, path+ edge, priority = probability(path) · probability(edge))

The priority of a path in the priority queue is simply the probability of the
path. Therefore, we try all suitable outgoing edges of the last state in the path
with the highest probability. If none of our aforementioned limits is exceeded, we
create new paths for each outgoing edge of the last state in that path. We append
these new paths to the priority queue if they do not reach the end. Otherwise,
we append them to the result list.

A Query Language for Workflow Instance Data 5

Our algorithm is used recursively for each parallel compound state to support
nested parallel compound states. Resulting paths are no longer sequences as we
have to store the states in each parallel region of the compound state. We store
for each path whether it interrupts parallel execution or not. All non-interrupting
paths are put into the priority queue.

For each interrupting path the paths of all other parallel regions have to
be aborted at a certain point. To determine this point, we use the time of the
interrupting path and search for all paths in the parallel regions with a shorter
time span.

5 Evaluation

The evaluation of our heuristic is divided into two parts. First, we present an
acyclic worst-case scenario and evaluate it against SPARQL property paths2.
Afterwards, we evaluate a cyclic activity diagram and assess the precision of
results. Our prototype is written in Python. SPARQL queries are processed by
Fuseki 0.2.1.

As SPARQL supports property paths to query paths in RDF graphs, we want
to compare them to our path finding heuristic. These property paths are like reg-
ular expressions for RDF properties and can be used to query paths of arbitrary
length in an RDF graph. SPARQL only finds matching endpoints to a property
path and does not search for all paths between these two endpoints. Therefore,
property paths aren’t suitable for finding all paths in activity diagrams. However,
for evaluating acyclic activity diagrams without parallelism with SPARQL we
can simulate the search for paths. To this end, we enumerate all paths between
two endpoints and store each path with separate synthetic endpoints in RDF.
Then, we can write SPARQL queries using property paths that find and return
the endpoints of all paths. Hence, the complexity of processing these SPARQL
queries can be compared to our path finding algorithm. However, even with this
extension, SPARQL property paths would not be applicable to cyclic diagrams
or parallel regions.

Fig. 2(b) shows an example for a “Fibonacci activity diagram”. In these
synthetic diagrams with N states, each state is connected to it’s two successors.
We evaluated ESTIMATE queries asking for all paths that start at the initial
state and end at the final state of the activity diagrams. The number of paths
for each diagram with N states is the corresponding Fibonacci number, so an
exponentially growing quantity of paths is generated. We define that transitions
to direct successors (e.g. B to C) of a state have a probability of 90%.

Our heuristic tries to find rmax = 2000 most probable paths. Fig. 2(a) shows
the cumulative probability of all found paths and the time to process each query.
As expected, at some point the cumulative probability of the found paths de-
creases.

Fig. 2(a) shows that processing all possible paths is only appropriate to a
certain extent. The time to find all paths using our SPARQL workaround or our

2 http://www.w3.org/TR/sparql11-property-paths/

6 A Query Language for Workflow Instance Data

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 5 10 15 20 25 30
 0

 0.2

 0.4

 0.6

 0.8

 1

p
ro

c
e
s
s
in

g
 t
im

e
 (

s
)

c
u
m

u
la

ti
v
e
 p

ro
b
a
b
ili

ty
 o

f
a
ll

fo
u
n
d
 p

a
th

s

N

cum. probability (heuristic)

time (heuristic)
time (all paths)

time (all paths with sparql)

(a) Comparison of processing times

A B C D E

(b) Fibonacci Workflow (N = 5)

A B

50%

50%

(c) Loops

Fig. 2. Processing times and evaluated workflows

path finding algorithm (searching for all paths) grows exponentially. SPARQL-
only processing with property paths is faster than an exhaustive search for all
paths with our algorithm as our implementation in python is not very fast.
Despite of this, a heuristic search with our algorithm is much faster as it tries
to find only the most probable paths. By defining the limits of the heuristic, the
user is able to balance processing time and path coverage, which is depicted as
cumulative probability of found paths.

Not all paths are equally important for results. Therefore, our heuristic tries
to find the rmax most probable paths. For cycles, longer paths usually have
less probability. Hence, in cyclic diagrams a few paths cover the most probable
scenarios.

Fig. 2(c) shows an example of a loop with cost(A) = 10 and cost(B) = 0.
Processing is limited by rmax. Since this is a simple example, the precise average
cost of all paths can be determined:

cost =

∞∑
i=1

1

2i
· 10i = 10

∞∑
i=1

i · 2−i = 10 · 2 = 20 (1)

By accumulating the weighted cost of the 10 most important paths, a relative
error of 5.86 · 10−3 remains. At 25 paths, the relative error is 4.02 · 10−7 and
therefore negligible. This is because for cycles longer paths usually have less
probability. The query for 25 paths took 0.042s. Hence, our heuristic is well-
suited for cyclic diagrams.

A Query Language for Workflow Instance Data 7

6 Related Work

Awad [1] reviews existing query languages for business processes and classifies
them according to three categories:

1. Querying business process definitions

2. Querying running instances of business processes

3. Querying execution history (logs) of completed business processes

The query languages in the first category are concerned with querying the
structure of business processes. The approaches in the second category monitor
running business processes. The third category is known as workflow or process
mining. As our approach is concerned with querying the definition of a workflow,
we consider the WQL to be in the first category. However, we also need to query
data associated with the workflow definition. Therefore, we review some existing
approaches in that category in addition to the literature already listed by Awad.

Awad [1] proposes a visual query language to search repositories of business
processes for certain patterns. Deutch and Milo [4] provide a comprehensive for-
malism to study process modeling and querying. They use this formalism to
evaluate the BPQL (Business Process Query Language) [3]. Francescomarino
and Tonella [8] define the semantics of a visual query language for business
processes by translating queries to SPARQL. They deal with the problem of
querying paths between two elements. However, they assume each pair of ele-
ments that is connected by a path to be directly connected by an RDF property
p:isConnectedTo. Hence, their solution is much simpler than our path finding
algorithm. The aforementioned approaches including the approaches listed by
Awad do not consider the data perspective and do not allow for aggregation of
data. Therefore, our approach provides some unique contributions in this regard.

7 Conclusions and Future Work

In this paper, we presented a language to query aggregated data. To this end, we
adapted an existing conceptual model to store workflow definitions as activity
diagrams in combination with workflow instance data in RDF. We developed a
heuristic query processing algorithm and evaluated it in comparison with pure
SPARQL. Our evaluation shows that our heuristic algorithm is well suited for
complex workflow definitions and is able to cope with cyclic graphs. The query
language enables our domain experts to analyze simulation input and output
data. Additionally, we can use this query language to load input data into our
simulation models. Therefore, our query language renders both the input data
management process and the evaluation of simulation output data more efficient.

In future work, we are planning to implement a semi-automatic transforma-
tion from activity diagrams to agent-based simulation models. Therefore, the
conceptual model, aggregation formalism and query language will become more
integrated with our simulation tools. We need to extend our conceptual model
to support probability densities instead of fixed times and costs. Moreover, we

8 A Query Language for Workflow Instance Data

will investigate how to combine this conceptual model with our existing multidi-
mensional conceptual model [2] to support data that depends on various factors,
e.g. the age of a patient.

Acknowledgements. This project is supported by the German Federal Min-
istry of Education and Research (BMBF), project grant No. 13EX1013B.

References

1. Awad, A.: BPMN-Q: A Language to Query Business Processes, vol. 119, pp. 115–
128. Citeseer (2007)

2. Baumgärtel, P., Lenz, R.: Towards data and data quality management for large
scale healthcare simulations. In: Conchon, E., Correia, C., Fred, A., Gamboa, H.
(eds.) Proceedings of the International Conference on Health Informatics. pp. 275–
280. SciTePress - Science and Technology Publications (2012), iSBN: 978-989-8425-
88-1

3. Beeri, C., Eyal, A., Kamenkovich, S., Milo, T.: Querying business processes. In:
Proceedings of the VLDB 2006 (2006)

4. Deutch, D., Milo, T.: A structural/temporal query language for business processes.
Journal of Computer and System Sciences 78(2), 583 – 609 (2012)

5. Djanatliev, A., Kolominsky-Rabas, P., Hofmann, B.M., Aisenbrey, A., German, R.:
Hybrid simulation approach for prospective assessment of mobile stroke units. In:
SIMULTECH 2012 - Proceedings of the 2nd International Conference on Simula-
tion and Modeling Methodologies, Technologies and Applications. pp. 357 – 366
(2012)

6. Dolog, P.: Model-driven navigation design for semantic web applications with the
uml-guide. In: Matera, M., Comai, S. (eds.) Engineering Advanced Web Applica-
tions. Rinton Press (2004)

7. Dumas, M., ter Hofstede, A.: Uml activity diagrams as a workflow specification
language. In: Gogolla, M., Kobryn, C. (eds.) UML 2001 - The Unified Modeling
Language. Modeling Languages, Concepts, and Tools, Lecture Notes in Computer
Science, vol. 2185, pp. 76–90. Springer Berlin / Heidelberg (2001)

8. Francescomarino, C., Tonella, P.: Crosscutting concern documentation by visual
query of business processes. In: Ardagna, D., Mecella, M., Yang, J. (eds.) Business
Process Management Workshops, Lecture Notes in Business Information Process-
ing, vol. 17, pp. 18–31. Springer Berlin Heidelberg (2009)

9. Gantner-Bär, M., Djanatliev, A., Prokosch, H.U., Sedlmayr, M.: Conceptual mod-
eling for prospective health technology assessment. In: Proceedings of the XXIV
Conference of the European Federation for Medical Informatics (2012)

10. Howe, B., Cole, G., Souroush, E., Koutris, P., Key, A., Khoussainova, N., Battle,
L.: Database-as-a-service for long-tail science. In: Bayard Cushing, J., French, J.,
Bowers, S. (eds.) Scientific and Statistical Database Management, Lecture Notes
in Computer Science, vol. 6809, pp. 480–489. Springer Berlin / Heidelberg (2011)

11. Skoogh, A., Johansson, B.: A methodology for input data management in dis-
crete event simulation projects. In: Proceedings of the 40th Conference on Winter
Simulation. pp. 1727–1735. WSC ’08, Winter Simulation Conference (2008)

